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Abstract

High-throughput pooled resequencing offers significant potential for whole genome population sequencing. However, its
main drawback is the loss of haplotype information. In order to regain some of this information, we present LDx, a
computational tool for estimating linkage disequilibrium (LD) from pooled resequencing data. LDx uses an approximate
maximum likelihood approach to estimate LD (r2) between pairs of SNPs that can be observed within and among single
reads. LDx also reports r2 estimates derived solely from observed genotype counts. We demonstrate that the LDx estimates
are highly correlated with r2 estimated from individually resequenced strains. We discuss the performance of LDx using
more stringent quality conditions and infer via simulation the degree to which performance can improve based on read
depth. Finally we demonstrate two possible uses of LDx with real and simulated pooled resequencing data. First, we use
LDx to infer genomewide patterns of decay of LD with physical distance in D. melanogaster population resequencing data.
Second, we demonstrate that r2 estimates from LDx are capable of distinguishing alternative demographic models
representing plausible demographic histories of D. melanogaster.
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Introduction

Linkage disequilibrium (LD) is a measure of the association
between alleles at two loci encapsulating how often these alleles are
observed together. LD is an important statistic because it reflects
the historical rates of recombination between loci and thus forms
the basis for many tests of selection [1] and the estimation of
demography [2,3]. Measurement of LD fundamentally requires
knowledge of multi-locus haplotype frequencies within a species
and these frequencies have been traditionally obtained through
direct observation of haplotypes or statistical inference of
haplotypes from unphased genotype data [4,5]. While these
approaches are feasible for single locus studies, they can become
logistically and computationally difficult when applied genome-
wide.
Here, we present a simple and cost effective method to directly

measure short-scale LD genomewide using pooled next-generation
resequencing data without any prior knowledge of genotype
frequencies or of the haplotypes present in the population. Pooled
resequencing data is generated by anonymously mixing DNA from
multiple individuals from a population or species followed by
massively parallel sequencing. Pooled resequencing occurs natu-
rally when sequencing intrinsically heterogeneous samples (e.g.,
tissue samples from one individual or microbe communities) and is
becoming a common experimental technique for quantitative [6]
and population genetic [7,8] analyses. Pooled resequencing is a
highly accurate method to estimate SNP [9–16] frequencies and

has also been used to estimate haplotype frequencies from pooled
samples when haplotypes are known a priori [17].
While there is some debate concerning the use of pooled

resequencing versus simply sequencing strains individually, both
methods have merits in different situations and certain scenarios
necessitate or benefit from the use of pooled sequencing (see
Futschik and Schlotterer [18] and Cutler and Jensen [19] for
extensive discussion). For instance, in some cases individual
genomes cannot be isolated (e.g., tissue samples). In other
circumstances, often encountered in evolutionary applications,
sampling many individuals of a population is easy but sequencing
them is labor-intensive or prohibitively expensive. Although
pooled resequencing has proved useful in measuring allele
frequencies to assess population differentiation [20] and summary
statistics based on the site frequency spectrum, [21] researchers
often forfeit estimates of linkage between polymorphic loci because
of the limited haplotype information available in an experiment
utilizing pooled resequencing.
We demonstrate that some of this haplotype information can be

reclaimed on a short scale which nonetheless allows genomewide
patterns of linkage to be observed. Our approach, called LDx,
directly estimates LD from pooled samples by measuring two-locus
haplotype frequencies across short sequence reads that tile any
particular genomic region. We test the accuracy of our technique
empirically by estimating r2, a common measure of LD, in a
pooled sample of 92 wild type Drosophila melanogaster with
individually sequenced genomes [22]. We find that our technique
accurately estimates r2 across the genome and that the correlation
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between the pooled and actual estimates of r2 is in the expected
range given the sampling variance determined by the read depth
of our samples. Finally, we show two applications of LDx: first, we
demonstrate that estimates of r2 based on pooled samples show a
classic signature of decay with physical distance and that the rate
of decay is negatively correlated with recombination rate; second,
we use LDx to investigate two alternative demographic histories of
D. melanogaster. LDx is implemented as an open-source Perl script
available via sourceforge (https://sourceforge.net/projects/ldx/).

Methods

Calculation of haplotype tables
To generate two-locus haplotype tables, LDx takes a list of sites

that are polymorphic within the pooled sample and a file
containing the positional mapping information of each read,
specified in the SAM format [23]. The position of polymorphic
sites can be inferred directly from the pooled sequence data using a
variety of techniques [24] or can be a list of polymorphisms known
a priori. LDx then finds all reads that cover pairs of polymorphic
sites whose distance apart is less than the maximum insert size of
the sequencing library. As is shown in Figure 1, the count for each
two locus haplotypes is computed, where xij is the number of
genotypes observed with allele i at the first locus and allele j at the
second locus. We refer to the number of reads that cover both
polymorphic sites as the intersecting read depth. r2 is calculated
between pairs of sites with intersecting read depth greater than a
minimum threshold, by default ten. In the case of loci with more
than two alleles, LDx takes the two most frequent alleles and
reports r2 estimates with reference to those.

Method 1 – direct inference
LDx reports the r2 value that would be calculated by naive

observation of the haplotype table. That is, it is computed as

r2~
(

xAB
xABzxAbzxaBzxab

{pApB)
2

pApB(1{pA)(1{pB)

where pA and pB are the allele frequencies computed only from the
intersecting reads:

pA~
xABzxAb

xABzxAbzxaBzxab
pB~

xABzxaB
xABzxAbzxaBzxab

Method 2 – approximate maximum likelihood
To estimate r2 using maximum likelihood, LDx uses the

observed haplotype table and allele frequency estimates derived
from all reads covering the two loci. We estimate allele frequencies
pA9 and pB9 using total read depth rather than from the marginal
allele frequencies calculated from the haplotype table because
estimates made from all reads will be more accurate than estimates
just made from intersecting reads.
For each pair of sites, we estimate r2 by computing the maximally

likely r2 conditional on the observed allele frequencies. While the
observed frequencies represent only an approximation to the true
frequencies, they act as a useful proxy for the purpose of evaluating
the likelihood of r2. The likelihood of the observed haplotype table
conditional on r2 and the observed allele frequencies is,
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where fij is the expected proportion of haplotype ij given r2 and is
computed
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and the allele frequencies are estimated as follows:

p0A~
xAbzxABzxA{

xABzxAbzxaBzxabzxA{zxa{

p0B~
xAbzxABzx{B

xABzxAbzxaBzxabzx{Bzx{b

Using this approach, the most likely linkage disequilibrium estimate
can only be computed for SNP pairs where the allele frequencies
estimated across all reads are congruent with the haplotype table
estimated from the intersecting reads. Because the intersecting reads
are a subset of the total number of reads, such incongruent estimates
are likely to occur when the true r2 is high, but not equal to one.
When allele frequency estimates are incongruent with the haplotype
table, the maximum likelihood is undefined and the reported
maximum likelihood is at the boundary of the likelihood surface.
LDx reports information on whether the r2 estimate for a particular
pair of sites is likely to be undefined.
This method is labeled as approximate, because it assumes the

observed allele frequencies as true, instead of simultaneously
maximizing the probabilities of the observed allele frequencies and
r2. Our implementations of the simultaneous three variable
maximization frequently failed to converge. In scenarios in which
our estimates did converge, the true MLE and approximate MLE
yielded similar results (results not shown). We therefore report the
approximate MLE r2 as a faster and more reliable proxy estimate.

Accounting for the experimental design
In pooled resequencing experiments, the binomial (multinomial)

variance associated with esimates of allele (haplotype) frequency
are a function of the number of chromosomes sampled and the

Figure 1. Cartoon depicting information leveraged from
pooled paired end reads. The cartoon represents an example
observation between two loci. Although many reads hit one locus or
the other, only five reads cross both loci. In this example, pA, computed
only from intersecting reads, is 3/5, while pA9, computed from all
available reads is 4/8.
doi:10.1371/journal.pone.0048588.g001

LDx: Linkage Estimation from Pooled NGS Data
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number of reads at any locus (supplemental equation 3 in [25]).
The variance of frequency estimates can be easily approximated
by calculating the effective number of observations at a given
locus, conditional on read depth and number of chromosomes in
the sample, as

n:eff~
n:reads ! n:chr{1

n:readszn:chr

We use this formula to calculate the effective number of
observations for each two-locus genotype when calculating the
approximate maximum likelihood estimates of r2 above. LDx uses
the effective number of observations to estimate the 95%
confidence intervals surrounding the approximate MLE estimate.
Confidence intervals are calculated as 61.96 log-likelihood units
away from the MLE (see the users guide).

Empirical validation
To test the accuracy of r2 estimation from pooled resequencing,

we used short read data described elsewhere ([16] SRA accession
SRR353365.1). Briefly, this library is a pool of 92 highly inbred D.
melanogaster strains derived from a natural population in Raleigh,
North Carolina representing a subset of the 162 strain Drosophila
Genetic Reference Panel (DGRP, [22]). Average autosomal
coverage in this library is ,406 and average coverage of the X-
chromosome is ,206. Only reads with base quality scores .20
were used. We identified all biallelic SNPs in the DGRP
population that are fixed within each strain (i.e., sites with no
residual heterozygosity) using precomputed SNP tables (https://
www.hgsc.bcm.edu/content/drosphila-genetic-reference-panel).
Of those, we only considered sites in which the total read depth in
the pooled sample was less than twice the chromosomal average in
order to exclude potential copy number variants from the analysis.
Our analysis also includes investigation of the accuracy of r2

estimates based on the number of intersecting reads and the
observed minor allele frequency.

Simulation
To test whether the observed correction between r2 estimated

from pooled data and the DGRP is expected given binomial
sampling, we generated simulated reads from the DGRP data. To
generate simulated pooled paired end reads, we used wgsim (23).
wgsim accepts a FASTA file listing full haplotypes from multiple
individuals and simulates the pooling process as if sampling from a
population composed of these individuals at user specified read
depths, read lengths and gap sizes. We used wgsim to simulate a
population composed of the 85 DGRP strains with 93 bp paired
end reads at ,106, 406, 1006 and 2006 coverage. Note, we
simulated a pooled population of 85 that are a perfect subset of the
92 strains used in the experimental pooled resequencing study; we
were unable to simulate pooled resequencing for all 92 because 7
strains were not sequenced to sufficiently high coverage.
We generated estimates of r2 from these libraries as described

above, with a minor allele frequency cutoff of 1%, and a minimum
intersecting read depth of 10, except that for the simulated 106
library, in which we only required a minimum of 5 intersecting
reads.

Results

LDx represents, to our knowledge, the first effort to estimate
levels of linkage disequilbrium from pooled resequencing data
directly with no prior information of haplotype frequencies. The

one existing method to infer haplotype frequencies and levels of
LD from pooled data [17] requires prior knowledge of haplotype
frequencies in the population. Obtaining prior knowledge of
genomic haplotypes can be difficult, expensive and labor intensive.
Moreover, the method presented in Long et al. [17] as well as
analogous methods to phase di- and polyploid sequence data (e.g.,
[4,26]) likely perform best when prior haplotypes are drawn
directly from the population in question. This requirement limits
the utility of these approaches. Through bypassing the haplotyping
step, LDx can be applied to populations for which only pooled
resequencing data exist.

Two-locus haplotype reconstruction
LDx recovers sufficient data from the pooled paired end

resequencing data to make inferences of linkage disequilibrium
through identifying SNP pairs with many intersecting reads. LDx
is able to detect SNP pairs that fall both on a single read and across
paired end reads, creating a bimodal distribution on the distances
between two SNPs of an identified SNP pair (Figure 2A). As read
depth increases in our simulations, we find that the proportion of
SNP pairs where r2 can be estimated by the approximate
maximum likelihood methods increases (Figure 2B).

Empirical validation
r2 estimates from pooled samples were highly correlated with

estimates from the actual haplotype data (p-values for all
correlation coefficients ,,0.001, Figure 3AB). For the direct
estimation method, we observed a small amount of upward bias in
our observed estimates of r2 due to sparse sampling of the
haplotype tables, leading to r2 estimates at 1. This upwards bias
was not present in the method since estimates integrated both the
allele frequencies and the observed haplotype tables. We observed
a small amount of downward bias in our approximate MLE
estimates, because incongruities between allele frequency estimates
and observed haplotype frequencies caused r2 estimates of zero
when only a subset of the haplotype table was sampled. The
accuracy of r2 estimates by LDx increases with higher minor allele
frequency (Figure 3D). r2 is more accurately estimated for these
pairs because there is a high probability of observing all possible
haplotypes.

Dependence on read depth, read length and insert size
In simulations of different read depths, we found that increasing

read depth leads to an increase in the correlation between DGRP
r2 and r2 estimated by the direct estimation and approximate MLE
methods (Figure 3C). The observed correlation estimate between
the DGRP r2 and both direct estimation and aproximate MLE r2

from the NC92 data fell within the range of correlation estimates
produced by our simulations. This serves as a validation of our
simulation procedure.
Given these results, increasing read length (and keeping the

number of reads constant) is expected to increase the accuracy of
r2 estimates because read depth at any given locus will increase
(results not shown). However, increasing insert size will generally
decrease the accuracy of r2 estimates because the average
intersecting read depth for any two SNP pairs will be lower.
To see this, note that the variance of insert size scales
proportionally to the average insert size. Thus, increasing the
insert size will decrease the intersecting read depth particularly
for pairs of SNPs that are at the average distance between the
paired end reads.

LDx: Linkage Estimation from Pooled NGS Data
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Decay of LD with distance
To test that estimates of r2 made by LDx are biologically

meaningful, we measured the decay of r2 with physical distance in
our pooled resequencing data. LDx estimates of r2 show the classic
pattern of decay with physical distance (Figure 4) and the rate of

decay varies as a function of recombination rate in a pattern highly
congruent with the decay rate of true r2 estimates (Table 1). In
regions of low recombination, the rate of decay of LD is higher
than in regions of high recombination. This is because at very
short physical distance (e.g., less than approximately 100 bp), loci

Figure 2. Identification of SNP pairs. A) The distance between component SNPs of a SNP pair are bimodally distributed, reflecting the frequency
of pairs that fall within a single read or across paired end reads. B) Increasing the read depth increased the proportion of pairs it was possible to
locate in the pooled paired-end read data with a 0.01 allele frequency cutoff. This proportion of estimable pairs is calculated by counting the number
of SNPs in a moving window of length 300 bp and using that to compute the number of possible SNP pairings (n choose 2). This is then compared to
the number of SNP pairs identified at a given read depth.
doi:10.1371/journal.pone.0048588.g002

Figure 3. Method performance of LDx in predicting linkage. r2 measured from the DGRP haplotypes is strongly correlated with estimates
from A) the direct observation method and B) the maximum likelihood method. In A), observing only a sparse sampling of the haplotypes creates the
overabundance of observed r2 estimates of 1. We determined the correlation between our r2 estimates and r2 values derived from haplotype data
provided by the DGRP (Mackay et al 2012). We restricted the DGRP dataset to those strains present within our sample (92 of 162 strains). C) Increasing
the simulated read depth increased the correlation between the true r2 and the r2 estimated by the direct observation (red) and maximum likelihood
(blue) methods. Estimates in these figures have minor allele frequency cutoff of 1%. D) Filtering based on minor allele frequency leads to more
accurate r2 estimates for the direct observation (red) and maximum likelihood (blue) methods. Points represent r2 estimates made from pooled
resequencing of the DGRP.
doi:10.1371/journal.pone.0048588.g003

LDx: Linkage Estimation from Pooled NGS Data
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in regions of low recombination are highly linked (high r2) whereas
loci in regions of high recombination are less tightly linked (lower
r2). However, by ,300 bp, loci in regions of both low and high
recombination have similar patterns of linkage.

Use of LDx in differentiating between demographic
events
Estimates of the site frequency spectrum and their deviation

from the expectation under neutrality can be useful for identifying
demographic events [27]. However, in some situations, alternative
demographic events can result in populations with very similar
levels of polymorphism. For instance, following a population
bottleneck we expect a reduction in heterzygosity that is
proportional to the the duration and the magnitude of the
bottleneck. To see this, note that expected heterozygosity following
a bottleneck can be computed as,

Ht~H0 e
- t
Nb

[28], where Ht is the post-bottleneck estimate of heterozygosity,
H0 is the initial heterozygosity, t is the duration of the bottleneck
and Nb is the size of the bottleneck population. Therefore, a
population with a bottleneck half as severe but with a duration
twice as long as some original population will have an identical
estimate of heterozygosity, measured as p. However, the LD
between sites in these two populations may not necessarily the
same. In these situations, LDx can be used to distinguish these
models.
We measured p using Variscan [29] and r2 in a forward-

simulated population run in SFS_code [30] for an out of Africa
bottleneck in D. melanogaster [31] (see figure 5). We then repeated
the simulations in two additional simulated populations – one
with a bottleneck twice as large, but lasting half as long (severe),
and one with a bottleneck half as large but twice as long in
duration (mild). The average r2/bp estimated both by the
approximate MLE method and the direct computation are
reported in table 2.
LDx estimated a significantly higher average r2/bp for both the

approximate MLE and direct estimation r2 values for the severe
model when compared to the original model (p-values 0.014 and
0.007, respectively). While LDx did not report a significantly
lower r2/bp for the mild bottleneck model, it was significantly
different from the severe model (p-values 0.0013 and 0.0012,
respectively).

Figure 4. LDx predictions decay at a biologically plausible rate.
r2 decays in a similar pattern among the direct estimation (red),
maximum likelihood (blue) and DGRP (green) r2 measures. Points
represent average r2 within distance classes. Averages were applied
only to pairs that had minor allele frequency .0.1. Lines represent
predicted decay or r2 with physical distance. Decay models were fit in R
2.13 (R core Development Team 2012).
doi:10.1371/journal.pone.0048588.g004

Table 1. Comparison of the decay of r2 with distance and recombination rate as estimated by different methods.

Parameter True r2 Direct observation r2 Approx. maximum likelihood r2

Intercept 0.66260.008 (82.51) 0.65460.009 (75.729) 0.60960.007 (87.97)

log(distance) 20.075760.0007 (2104.4) 20.060460.0008 (277.37) 20.072960.0006 (2116.6)

recombination rate 20.02260.0012 (218.07) 20.01860.0013 (213.63) 20.01760.001 (216.52)

log(dist) x rec. rate 0.0060960.0007 (8.50) 0.0066160.0008 (8.575) 0.0062660.0006 (10.14)

Results from a regression model that examines the how r2 decays as a function of physical distance (bp) and recombination rate (cm/Mb) and their interaction.
Recombination rates were estimated from Fiston-Lavier et al. (2010) [33]. Values represent parameter estimates 6 standard error and t statistics (in parentheses).
doi:10.1371/journal.pone.0048588.t001

Figure 5. Reference Demographic Model. Following Table 2 in
Thornton & Andolfatto’s out of Africa model [31] at r/h=7, the
population reaches equilbrium at population size N0, contracts to a size
of Nb, and then expands back to N0 after 4N0t generations. The
population then continues another 4N0 (.048) generations before
sampling. In our model, we used N0 = 1000 and sampled 20 individuals.
doi:10.1371/journal.pone.0048588.g005

LDx: Linkage Estimation from Pooled NGS Data
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Discussion

LDx represents, to our knowledge, the first effort to directly
estimate levels of linkage disequilibrium from high-throughput
pooled resequencing data with no prior knowledge of haplotype
structure in the target population. It provides an accurate estimate
of linkage over hundreds of basepairs genomewide, and suggests
that important information on linkage can be retrieved from
populations sequenced using pooled sequencing. Note, however,
that our ability to estimate LD accurately between any two specific
points is low even at reasonably high sequencing depths and even
if they are physically close to each other, because the number of
reads that overlap any two particular SNPs is much lower than the
coverage at any one specific SNP (Fig. 2B).
Certain conditions make the extraction of useful LD informa-

tion from pooled data very difficult. For example, if the read
length of the pooled sequences is much shorter than the length at
which linkage decays to background levels in the genome, LDx
will not provide informative output concerning r2. Further, linkage
cannot be calculated beyond the length of a read pair, as
haplotyping is impossible with pooled data. Indeed, those
researchers interested in identifying faint signals at long distances
may have better success with individual strain haplotyping.
Additionally, if genomic polymorphisms are very sparse, LDx will
estimate linkage based on a small number of pairs. Such
limitations make it unlikely that LDx or similar methods will
useful for humans or other organisms with low levels of
polymorphism per basepair.

Despite these limitations, we imagine estimates of r2 made by
LDx will be useful in understanding how patterns of LD change
genomewide due to selection and demography. For instance,
strong bottlenecks are expected to dramatically increase pairwise
LD genomewide and the average change in LD before and after a
bottleneck could be used to estimate the severity of the bottleneck
[32]. As demonstrated above, certain disparate demographic
effects will leave similar imprints in the site frequency spectrum.
LDx offers the potential to differentiate these scenarios by
detecting differences in linkage. LDx could also be useful for
identifying previously unannotated paralogs as these regions
should have aberrantly high estimates of LD.
As sequencing technology continues to improve, read depth and

fragment length will increase. This will result in a higher accuracy
of r2 estimation and an increase in the probability that r2 can be
estimated between two SNPs. While these improvements will only
marginally increase the accuracy of allele frequency estimation,
they will dramatically increase the accuracy of LD estimation from
pooled data.
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frequency spectrum based methods. LDx can distinguish between the models by estimating r2. The model with a mild, more prolonged bottleneck has lower r2 than the
Thornton & Andolfatto reference model, while the model with a more severe, short bottleneck has higher r2. Estimation cells report mean r2 6 standard deviation.
at is measured in generations scaled by 4Ne. All models had the same number of post bottleneck generations as the Thornton & Andolfatto model.
doi:10.1371/journal.pone.0048588.t002
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