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Abstract

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-
genome data sets from natural populations of this species have been published over the last years. A major challenge is
the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipe-
lines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by
developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologe-
nome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a
probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data
available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from
over 100 locations in>20 countries on four continents. Several of these locations have been sampled at different seasons
across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with
sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP
data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is
to provide this scalable platform as a community resource which can be easily extended via future efforts for an even
more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic
patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.

Key words: Drosophila melanogaster, population genomics, SNPs, evolution, adaptation, demography.

Introduction
The vinegar fly Drosophila melanogaster is one of the oldest
and most important genetic model systems and has played a
key role in the development of theoretical and empirical pop-
ulation genetics (e.g., Schneider 2000; Hales et al. 2015; Haudry
et al. 2020). Through decades of work, we now have a basic
picture of the evolutionary origin (David and Capy 1988;
Lachaise et al. 1988; Keller 2007; Sprengelmeyer et al. 2020),

colonization history and demography (Caracristi and
Schlötterer 2003; Li and Stephan 2006; Duchen et al. 2013;
Grenier et al. 2015; Bergland et al. 2016; Arguello et al. 2019;
Kapopoulou et al. 2020), and spatiotemporal diversification
patterns of this species and its close relatives (Kolaczkowski
et al. 2011; Fabian et al. 2012; Bergland et al. 2014; Kapun et al.
2016, 2020; Lack et al. 2016; Machado et al. 2016, 2021).
The availability of high-quality reference genomes (Adams
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2000; Celniker and Rubin 2003; dos Santos et al. 2015)
and genetic tools (Schneider 2000; Duffy 2002; Jennings
2011; Hales et al. 2015; Haudry et al. 2020) facilitates placing
evolutionary studies of flies in a mechanistic context, allow-
ing for the functional characterization of ecologically rele-
vant polymorphisms (e.g., de Jong and Bochdanovits 2003;
Paaby et al. 2010, 2014; Mateo et al. 2014; Kapun et al. 2016;
Durmaz et al. 2018, 2019; Ramaekers et al. 2019).

Recently, work on the evolutionary biology of Drosophila
has been fueled by a growing number of population genomic
data sets from field collections across a large portion of D.
melanogaster’s range (Kapun et al. 2020; Grenier et al. 2015;
Arguello et al. 2019; Guirao-Rico and Gonz�alez 2019; Machado
et al. 2021). These genomic data consist either of re-
sequenced inbred (or haploid) individuals (e.g., Langley et al.
2012; Mackay et al. 2012; Grenier et al. 2015; Lack et al. 2015,
2016; Mateo et al. 2018; Kapopoulou et al. 2020) or pooled
sequencing (Pool-Seq) of outbred population samples (Pool-
Seq; e.g., Kolaczkowski et al. 2011; Fabian et al. 2012; Bastide et
al. 2013; Campo et al. 2013; Bergland et al. 2014; Machado et
al. 2016, 2021; Kapun et al. 2016, 2020). Pooled resequencing
provides accurate and precise estimates of allele frequencies
across most of the allele frequency spectrum (Zhu et al. 2012;
Lynch et al. 2014; Schlötterer et al. 2014) at a fraction of the
cost of individual-based sequencing. Although Pool-Seq
retains limited information about linkage disequilibrium
(LD) relative to individual sequencing (Feder et al. 2012),
Pool-Seq data can be used to infer complex demographic
histories (e.g., Cheng et al. 2012; Bergland et al. 2016; Deitz
et al. 2016; Corbett-Detig and Nielsen 2017; Gould et al. 2017;
Giesen et al. 2020), characterize levels of diversity (Kofler,
Orozco-terWengel, et al. 2011; Kofler, Pandey, et al. 2011),
and infer genomic loci involved in recent adaptation
in nature (Flatt 2016; Kapun et al. 2016, 2020; Gould et al.
2017; Bogaerts-M�arquez et al. 2021; Machado et al. 2021)
and during experimental evolution (e.g., Turner et al. 2011;
Burke 2012; Orozco-terWengel et al. 2012; Kofler and
Schlötterer 2014). However, the rapidly increasing number
of genomic data sets processed with different bioinformatic
pipelines makes it difficult to compare results across studies
and to jointly analyze multiple data sets. Differences among
bioinformatic pipelines include filtering methods for the raw
reads, mapping algorithms, the choice of the reference ge-
nome, or SNP calling approaches, potentially generating biases
when combining processed data sets from different sources
for joint analyses (e.g., Gautier et al. 2013; Hoban et al. 2016).

To address these issues, we have developed a modular
bioinformatics pipeline to map Pool-Seq reads to a hologe-
nome consisting of fly and microbial genomes, to remove
reads from potential Drosophila simulans contaminants,
and to estimate allele frequencies using two complementary
SNP callers. Our pipeline is available as a Docker image (avail-
able from https://dest.bio, last accessed September 6, 2021) to
standardize versions of software used for filtering and map-
ping, to make the pipeline available independently of the
operating system used, and to facilitate future updates and
modification of the pipeline. In addition, our pipeline allows
using either heuristic or probabilistic methods for SNP calling,

based on PoolSNP (Kapun et al. 2020) and SNAPE-pooled
(Raineri et al. 2012), respectively. We also provide tools for
performing in silico pooling of existing inbred (haploid) lines
that exist as part of other Drosophila population genomic
resources (Langley et al. 2012; Pool et al. 2012; Grenier et al.
2015; Kao et al. 2015; Lack et al. 2015, 2016). This pipeline is
also designed to be flexible, facilitating the streamlined addi-
tion of new population samples as they arise.

Using this pipeline, we generated a unified data set of
pooled allele frequency estimates of D. melanogaster sampled
across a large portion of its world-wide distribution, including
Europe, North America, Africa, Australia, and Asia. This data
set is the result of the collaborative efforts of the European
DrosEU (Kapun et al. 2020) and DrosRTEC (Machado et al.
2021) consortia and combines both novel and previously
published population genomic data. Our data set combines
samples from 100 localities, 55 of which were sampled at two
or more time points across the reproductive season (�10–15
generations/year) for one or more years. Collectively, these
samples represent >13,000 individuals, cumulatively se-
quenced to >16,000� coverage or �1� per fly. The cost
effectiveness of Pool-Seq has enabled us to estimate
genome-wide allele frequencies over geographic space (con-
tinental and subcontinental) and time (seasonal, annual, and
decadal) scales, thus making our data a unique resource for
advancing our understanding of fundamental adaptive and
neutral evolutionary processes. We provide data in two file
formats (VCF and GDS: Danecek et al. 2011; Zheng et al.
2017), thus allowing researchers to utilize a variety of tools
for computational analyses. Our data set also contains sam-
pling and environmental metadata to enable various down-
stream analyses of biological interest. We further employed
demographic modeling to investigate the evolutionary history
of two distinct genetic clusters in Europe using the Drosophila
Evolution over Space and Time (DEST) Pool-Seq data set and
developed guidelines for using Pool-Seq data for model-based
demographic inference using the python package moments.

Results

Integrating a Worldwide Collection of D. melanogaster
Population Genomics Resources
We developed a modular and standardized pipeline for
generating allele frequency estimates from pooled resequenc-
ing of D. melanogaster genomes (supplementary fig. S1,
Supplementary Material online). Using this pipeline, we assem-
bled a data set of allele frequencies from 271 D. melanogaster
populations sampled around the world (fig. 1A and supple-
mentary table S1, Supplementary Material online). Many of
these samples were collected at the same location, at different
seasons and over multiple years (fig. 1B). The nature of the
genomic data for each population varies as a consequence of
biological origin (e.g., inbred lines or Pool-Seq), library prepa-
ration method, and sequencing platform.

To assess whether these features affect basic attributes of
the data set, we calculated six basic quality metrics focusing
on the Pool-Seq samples (fig. 1C and supplementary table S2,
Supplementary Material online). On average, median read
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depth across samples is 62x (range: 10–217x). The per-
nucleotide missing allele frequency rate was less than 7%
for most (95%) of the samples. Excluding populations with
high missing data rate (>7%), the proportion of sites with
missing data was positively correlated with read depth
(P¼ 1.2 � 109, R2 ¼ 0.4). The positive correlation between
read depth and missing data rate is primarily due to an in-
creased sensitivity to identify indels. The number of flies per
sample varied from 33 to 205, with considerable heterogene-
ity among the DrosRTEC samples [standard deviation (SD)¼
30], but not among DrosEU samples (SD¼ 0.04). Variation in
the number of flies and in sequencing depth is reflected in the
effective coverage (NEff) of each pool, an estimate of the num-
ber of independent reads after accounting for double bino-
mial sampling that occurs during Pool-Seq (Kolaczkowski et
al. 2011; Feder et al. 2012; fig. 1C). There was considerable
variation in PCR duplicate rate among samples, with notable
differences between batches of DrosEU samples (�6% in
2014 vs. 18% in 2015/16; t-test, P¼ 1.8 � 10�19) and
DrosRTEC samples (�3% in samples collected as part of
Bergland et al. 2014 vs. �14% in samples collected as part
of Machado et al. 2021; P¼ 6.37 � 10�3). Curiously, the
2015/2016 DrosEU samples were made with a PCR-free kit,
suggesting that the observed PCR duplicates were optical
duplicates and not amplification artifacts. Contamination of
samples by D. simulans varied among populations but was

generally absent (<1% D. simulans specific reads; supplemen-
tary table S1, Supplementary Material online).

Identification and Quality Control of SNP
Polymorphisms
In order to determine appropriate SNP calling and filtering
parameters, and to identify potentially problematic popula-
tion samples, we first calculated the ratio of the number of
nonsynonymous polymorphisms to the number of synony-
mous polymorphisms (pN/pS) for each population sample
across the whole genome. Because nonsynonymous changes
are expected to be under strong purifying selection (Kreitman
1983), the pN/pS metric can reflect the presence of sequencing
errors that would disproportionately inflate pN relative to pS.
Our primary goal was not to provide novel estimates of pN/pS

but rather to ensure that all population samples have esti-
mates that are consistent with estimates generated from in-
dependent Drosophila data sets (Mackay et al. 2012).

For the PoolSNP data set, we varied the global minor allele
count (MAC) and global minor allele frequency (MAF) and
then calculated pN/pS. MAC thresholds <50 resulted in large
variances of pN/pS caused by 20 outlier populations charac-
terized by unusually high pN/pS ratios and numbers of private
SNPs (supplementary table S3, Supplementary Material on-
line, and fig. 2A and B) indicating that there may be elevated
numbers of sequencing errors in some samples. Some
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(n¼ 17) of these samples had previously been found to show
positive values of Tajima’s D across the whole genome
(Kapun et al. 2020). We observed that, as expected, pN/pS

was negatively correlated with MAC (linear regression;
P< 0.001; fig. 2B) and that applying a MAC threshold of 50
reduced the elevated pN/pS ratios of the 20 aforementioned
outlier samples to values similar to the rest of the data set,
suggesting that potential sequencing errors had been largely
removed. To minimize false-positive variant calling, we chose
MAC¼ 50 and MAF¼ 0.001 as conservative threshold
parameters for SNP calling with PoolSNP. Using these param-
eters, PoolSNP identified 4,381,144 polymorphisms segregat-
ing among the 271 D. melanogaster samples (Pool-Seq plus
DGN), and 4,042,456 polymorphisms segregating among the
246 Pool-Seq samples (excluding DGN).

In contrast to PoolSNP, SNAPE-pooled calls variants in
each sample separately using a probabilistic approach which
integrates allelic information across all populations for heu-
ristic SNP calling. To quantify the number of putative se-
quencing errors among low frequency variants we varied
the local MAF threshold per sample and calculated pN/pS

for each sample in the SNAPE-pooled data set. Similar to
PoolSNP, we found that elevated pN/pS was negatively corre-
lated with a local MAF threshold (linear regression; P< 0.001;
fig. 2C) and that the 20 aforementioned problematic samples
also had a strong effect on the variance and mean of pN/pS

ratios. Accordingly, we excluded these 20 samples from fur-
ther analyses of low-frequency variants and private SNPs and
applied a conservative local MAF filter of 5% for the remain-
der of the SNAPE-pooled analysis to avoid misclassification of
sequencing errors as low-frequency variants. Our SNAPE-
pooled results identified 8,541,651 polymorphisms segregat-
ing among the remaining 226 samples. Below, we discuss the
geographic distribution and global frequency of SNPs identi-
fied using these two methods in order to provide insight into
the marked discrepancy in the number of SNPs that they
identify.

Similarity of SNP Polymorphisms Detected with
PoolSNP and SNAPE-Pooled
We calculated three metrics related to the amount of poly-
morphism discovered by our pipelines: the abundance of
polymorphisms segregating in n populations across each
chromosome (fig. 3A), the difference of discovered polymor-
phisms between SNAPE-pooled and PoolSNP (defined as the
absolute value of PoolSNP minus SNAPE-pooled; fig. 3B), and
the amount of polymorphism discovered per MAF bin (fig.
3C). We evaluated these three metrics across a 2� 2 filtering
scheme: two MAF filters (0.001, 0.05) and two sample sets
(the whole data set of 246 samples; and the 226 samples that
passed the sequencing error filter in SNAPE-pooled; see
Identification and Quality Control). Notably, PoolSNP was
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biased toward identification of common SNPs present in
multiple samples, whereas SNAPE-pooled was more sensitive
to the identification of polymorphisms that appeared in few
populations only (fig. 3B). For example, at a MAF filter of
0.001, SNAPE-pooled discovered more polymorphisms that
were shared in less than 25 populations (relative to PoolSNP),
and these accounted for�79% of all polymorphisms discov-
ered by the pipeline. Likewise, at a MAF filter of 0.05, SNAPE-
pooled discovered more polymorphisms that were shared in
less than 97 populations; these accounted for �71% of all
discovered polymorphisms. SNAPE-pooled identifies fewer
polymorphic sites that are shared among a large number of
populations than PoolSNP does because SNAPE-pooled does
not integrate information across multiple populations.
Consequently, SNAPE-pooled can fail to identify SNPs that
are at low overall frequencies and get called as monomorphic
or missing in a subset of populations given the posterior
probability thresholds that we employed (see Materials and
Methods).

We also compared AF estimates between the two callers
using the data set of 226 populations applying a local MAF
filter of 0.05 in the SNAPE-pooled data set (see supplementary
table S2, Supplementary Material online). Among the posi-
tions identified as polymorphic by both calling methods, our
frequency estimates were identical for the great majority of
SNPs (92–99.67%) in all samples analyzed. Between 0.1%
and 7.1% of the polymorphic SNPs differed by less than
5% frequency between the two methods, 0.003–2.1% of poly-
morphic SNPs differed by 5–10% frequency and only up
to 0.3% varied >10% frequency (supplementary table S4,
Supplementary Material online). Finally, on average 13.32%
of the positions analyzed were called as polymorphic by
PoolSNP whereas there were monomorphic or no data
according to SNAPE-pooled, consistent with the use of a
hard threshold of the posterior-probability in the SNAPE call-
ing step (supplementary table S4, Supplementary Material
online).

Mutation-Class Frequencies
We estimated the percentage of mutation classes (e.g., A!
C, A! G, A! T, etc.) accepted as polymorphisms in both
our SNP calling pipelines and classified these loci as being
either “rare” (i.e., AF <5% and shared in less than 50 popu-
lations) or “common” (AF>5% and shared in more than 150
populations). For this analysis, we classified the minor allele as
the derived allele. Figure 4A shows the percentage of each
mutation class for the 226 populations which passed filters in
both SNAPE-pooled and PoolSNP. In addition, we overlaid, as
a horizontal line, the expected mutation frequencies for rare
(blue; Assaf et al. 2017) and common (red; Mackay et al. 2012)
mutations. In general, our SNP discovery pipelines produced
mutation-class relative frequencies of rare and common
mutations that are consistent with empirical expectations,
however, there were some exceptions to this pattern. For
example, the frequencies of the C/G rare mutation-class
were consistently underestimated by both callers, a phenom-
enon that might be related to the known GC bias of modern
sequencing machines (Benjamini and Speed 2012). The cor-
relation between SNP calling pipelines was high across both
common and rare mutation classes, with marginal discrep-
ancies observed for rare variants (fig. 4B).

Inversion Frequencies
Using a set of inversion-specific marker SNPs (Kapun et al.
2014), we estimated the frequencies of seven cosmopolitan
inversion polymorphisms (In(2L)t, In(2R)NS, In(3L)P, In(3R)C,
In(3R)K, In(3R)Mo, and In(3R)Payne). We found that most of
the 271 populations were polymorphic for at least one or
more chromosomal inversions (supplementary table S1,
Supplementary Material online). Although most inversions
were either absent or rare (average frequencies: In(2R)NS ¼
5.2% [6 4.7% SD], In(3L)P¼ 3.1% [6 4.3% SD],
In(3R)C¼ 2.5% [6 2.3% SD], In(3R)K¼ 1.8% [6 7.4% SD],
In(3R)Mo ¼ 2.2% [6 3.6% SD] and In(3R)Payne ¼ 5.7% [6
7.1% SD]), only In(2L)t segregated at substantial frequencies in
most populations (average frequency ¼ 18.3% [6 11% SD]).

FIG. 3. Polymorphism data in the PoolSNP and SNAPE data sets. (A) Number of polymorphic sites discovered across populations. The x-axis shows
the number of populations that share a polymorphic site. The y-axis corresponds to the number of polymorphic sites shared by any number of
populations, on a log10 scale. The colored lines represent different chromosomes and are stacked on top of each other. (B) The difference of
discovered polymorphisms between SNAPE-pooled and PoolSNP. (C) Number of polymorphic sites as a function of allele frequency and the
number of populations in which the polymorphisms are present. The color gradient represents the number of variant alleles from low to high
(black to green). The x-axis is the same as in (A), and the y-axis is the MAF. The 2 � 2 filtering scheme is shown on the right side of the figure.
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We found that our novel inversion frequency estimates of the
DrosEU data from 2014 were highly consistent with previous
estimates from Kapun et al. (2020) as coefficients of determi-
nation (R2) ranged from 91% to 99%.

Comparison to Previously Published Data Sets
We compared the allele frequency and read depth estimates
from the DEST data set (based on PoolSNP) to previously
published estimates by Bergland et al. (2014), and Kapun et al.
(2020), Machado et al. (2021). For these data sets, we
employed two types of correlations: the nominal correlation
(i.e., Pearson’s correlation; CO) and the concordance correla-
tion coefficient (CCC; Lin 1989; Liao and Lewis 2000). The
CCC determines how much the observed data deviate from
the line of perfect concordance (i.e., the 45 degree-line on a
square scatter plot).

Estimates of allele frequency were strongly correlated and
consistent with previously published data. The strongest cor-
relation of DEST AF and previously published AF was ob-
served with the data of Kapun et al. (2020) (average CO
and CCC >0.99; fig. 5, top row and supplementary fig. S4,
Supplementary Material online). AF correlations with
Machado et al. (2021) are also generally high (average CO
and CCC >0.98; fig. 5, top row and supplementary fig. S5,
Supplementary Material online). AF correlations with the
data from Bergland et al. (2014) were lower (0.94; supplemen-
tary fig. S6, Supplementary Material online), likely reflecting
differences in data processing and quality control.

We also examined two aspects of read depth, that is, nom-
inal coverage (COV), the number of reads mapping to a site

that has passed quality control, and NEff (Kofler, Orozco-
terWengel, et al. 2011; Kolaczkowski et al. 2011; Feder et al.
2012; Schlötterer et al. 2014). Similar to AF estimates, the
Pearson correlation coefficients for both coverage and effec-
tive coverage were large (0.92, 0.95, 0.90 for Machado et al.
[2021], Kapun et al. [2020], and Bergland et al. [2014], respec-
tively; see supplementary figs. S7–S12, Supplementary
Material online), indicating that sample identity was pre-
served appropriately. However, the concordance correlation
coefficients were substantially lower between the data sets
(0.24, 0.88, 0.79, respectively), indicating systematic differences
in read depth between the DEST data set and previously
published data. Indeed, read depth estimates were on average
�12%,�14%, and�20% lower in the DEST data set as com-
pared with the previously published data in Machado et al.
(2021), Kapun et al. (2020), and Bergland et al. (2014), respec-
tively. The lower read depth and effective read depth esti-
mates in the DEST data set reflect our more stringent quality
control and filtering.

Genetic Diversity
We estimated nucleotide diversity (p), Watterson’s h, and
Tajima’s D for both the PoolSNP and SNAPE-pooled data
sets (supplementary table S5, Supplementary Material on-
line). Results for the African, European, and North
American population samples are presented in figure 6
(also see supplementary fig. S13, Supplementary Material on-
line for estimates by chromosome arm). All estimates were
positively correlated between PoolSNP and SNAPE-pooled
(P< 0.001), with Pearson’s correlation coefficients of 0.90,
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0.83, and 0.70 for p, Watterson’s h, and Tajima’s D, respec-
tively. Higher values of genetic diversity were obtained for the
SNAPE-pooled data set, probably due to its higher sensitivity
for detecting rare variants (see Patterns of Polymorphism
between PoolSNP and SNAPE-Pooled). Pool size had no sig-
nificant effect on the four summary statistics in European or

in North American populations (linear models, all P> 0.05),
suggesting that data from populations with heterogeneous
pool sizes can be safely merged for accurate population ge-
nomic analysis.

The highest levels of genetic diversity were observed for
ancestral African populations (mean p¼ 0.0060, mean

Machado et al. 2019 Kapun et al. 2020 Bergland et al. 2014
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h¼ 0.0059); North American populations exhibited higher
genetic variability (mean p¼ 0.0054, mean h¼ 0.0054) than
European populations (mean p¼ 0.0049, mean h¼ 0.0048).
These results are consistent with previous observations based
on individual genome sequencing (e.g., see Lack et al. [2016]
and Kapun et al. [2020]). Our observations are also consistent
with previous estimates based on pooled data from three
North American populations (mean p¼ 0.00577, mean
h¼ 0.00597; Fabian et al. 2012) and 48 European populations
(mean p¼ 0.0051, mean h¼ 0.0052; Kapun et al. 2020).
Estimates of Tajima’s D were positive when using PoolSNP,
and slightly negative using SNAPE. These results are expected
given biases in the detection of rare alleles between these two
SNP calling methods. In addition, our estimates for p,
Watterson’s h and Tajima’s D were positively correlated with
previous estimates for the 48 European populations analyzed
by Kapun et al. (2020) (all P< 0.01). Notably, slightly lower
levels of Tajima’s D in North America as compared with
both Africa and Europe (fig. 6C) may be indicative for admix-
ture (Stajich and Hahn 2005), which has been identified previ-
ously along the North American east coast (Caracristi and
Schlötterer 2003; Kao et al. 2015; Bergland et al. 2016).

Phylogeographic Clusters in D. melanogaster
We performed PCA on the PoolSNP variants using samples
from the North American (DrosRTEC), European (DrosEU),
and African (DGN) data sets (excluding all Asian and
Oceanian samples). Prior to analysis, we filtered the joint
data sets to include only high-quality biallelic SNPs. Because
LD decays rapidly in Drosophila (Comeron et al. 2012), we only
considered SNPs at least 500 bp away from each other. PCA on
the resulting 100,000 SNPs revealed evidence for discrete phy-
logeographic clusters that correspond to geographic regions
(supplementary fig. S14B, Supplementary Material online).
PC1 (24% variance explained [VE]) partitions samples between
Africa and the other continents (fig. 7A). PC2 (9% VE) separates
European from North American populations, and both PC2
and PC3 (4% VE) divide Europe into two population clusters
(fig. 7B). As expected, North American samples are intermedi-
ate to European and African samples, presumably due to re-
cent secondary contact (Kao et al. 2015; Pool 2015; Bergland et
al. 2016). Notably, these spatial relationships become evident
when PCA projections from each sample are plotted onto a
world map (fig. 7C). Interestingly, the emergent clusters in
Europe are not strictly defined by geography. For example,
the western cluster (diamonds in fig. 7D) includes Western
Europe as well as Finland, Turkey, Cyprus, and Egypt. The east-
ern cluster, on the other hand, consists of several populations
collected in previous Soviet republics as well as Poland,
Hungary, Serbia and Austria. Below, we use demographic
modeling to resolve the split time between these clusters.

A unique feature of this data set is that it contains a mix-
ture of Pool-Seq and inbred (or haploid) genome data. For
some geographic regions, the DEST data set contains both
data types. Inbred and Pool-Seq samples from nearby geo-
graphic regions clustered in the same regions of PC space
(supplementary fig. S15, Supplementary Material online).
Excluding the DGN-derived African samples, no PC was

significantly correlated with data type (PC1: P¼ 0.352, PC2:
P¼ 0.223, PC3: P¼ 0.998).

Geographic Proximity Analysis
The geographic distribution of our samples allows leveraging
basic principles of phylogeography and population genetics
to assess the biological significance of rare SNPs (Wright 1943;
Battey et al. 2020). We expect to observe young neutral alleles
at low frequencies among geographically close populations,
reflecting isolation by distance. We tested this hypothesis by
estimating the average geographic distance among pairs of
populations that share SNPs only occurring in these two
populations (doubletons), among three populations that
share tripletons, and so forth. Without imposing a MAF filter,
both SNAPE-pooled and PoolSNP pipelines produced pat-
terns concordant with the expectation. That is, populations
in close proximity were more likely to share rare mutations
relative to random chance pairings (fig. 8A). Notably, SNPs
identified in less than 25 populations tend to be geographi-
cally closer in PoolSNP, relative to SNAPE-pooled. The pri-
mary source of this discrepancy between callers occurs when
evaluating SNPs shared by just two populations (fig. 8B). In
the case of PoolSNP, only 0.0006% of all SNPs are private to
just two populations and the mean geographical distance is
702 km. In the case of SNAPE-pooled, 9.3% of all SNPs are
private to two populations and the mean distance is
�2,000 km. Aside from the case of n¼ 2, the difference in
proximity estimates between the callers is minimal. These
findings suggest that some of the SNAPE-pooled SNPs which
only segregate in two populations or less might be false pos-
itives. To further evaluate these geographical patterns, we
estimated the probability that any given population pair
belongs to a particular phylogeographic cluster (supplemen-
tary fig. S16, Supplementary Material online) as a function of
their shared variants. Our results indicate that rare variants,
private to geographically proximate populations, are strong
predictors of phylogeographic provenance (see fig. 8C).

Geographically Informative Markers
An inherent strength of our broad biogeographic sampling is
the potential to generate a panel of core demography SNPs to
investigate the provenance of current and future samples. We
created a panel of geographically informative markers (GIMs)
by conducting a discriminant analysis of principal compo-
nents (DAPC) to discover which loci drive the phylogeo-
graphic signal in the data set. We trained two separate
DAPC models: the first utilized the four phylogeographic
clusters identified by principal components (PCs; fig. 6A
and B and supplementary fig. S16 and table S1,
Supplementary Material online); the second utilized the geo-
graphic localities where the samples were collected (i.e., coun-
tries in Europe and the U.S. states). This optimization
indicated that the information contained in the first 40 PCs
maximizes the probability of successful assignment (fig. 9A).
This resulted in the inclusion of 30,000 GIMs, most of which
were strongly associated with PCs 1–3 (fig. 9B inset).
Moreover, the correlations were larger among the first 3
PCs and decayed monotonically for the additional PCs (fig.
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9B). Lastly, our GIMs were uniformly distributed across the fly
genome (fig. 9C).

We assessed the accuracy of our GIM panel using a leave-one-
out cross-validation approach (LOOCV). We trained the DAPC
model using all but one sample and then classified the excluded
sample. We performed LOOCV separately for the phylogeo-
graphic cluster groups, as well as for the state/country labels.
The phylogeographic model used all DrosRTEC, DrosEU, and
DGN samples (excluding Asia and Oceania with too few indi-
viduals per sample); the state/country model used only samples
for which each label had at least three or more samples. Our
results showed that the model is 100% accurate in terms of
resolving samples at the phylogeographic cluster level (fig. 9D)
and 89% at the state/country level (fig. 9E). We anticipate that
this set of GIMs will be useful to validate the geographic origin of
samples in future sequencing efforts (i.e., identify sample swaps;
Nunez et al. 2021) and to study patterns of migration. We note
that although Drosophila populations evolve over short time-
scales in temperate orchards, samples collected over multiple
years were predicted with 89% accuracy in our LOOCV analysis,
suggesting that these markers will be valuable for future samples.
We provide a tutorial on the usage of the GIMs in supplemen-
tary methods, Supplementary Material online.

Estimating the Divergence Time between European
Genetic Clusters
The DEST data set can be used to test comparative hypoth-
eses of demographic history. We examined the divergence

time between pairs of populations sampled throughout
Europe. This is motivated by the observation that the two
European clusters have different levels of genetic variation.
The eastern cluster (E) is largely self-contained to Eastern
Europe and harbors the lowest levels of hp(0.0049, 95% CI
¼ 0.0047–0.0050). The western cluster (W), on the other
hand, contains populations from Western Europe as well as
Finland, Turkey, Cyprus, and Egypt, thus making it geograph-
ically heterogeneous. The western cluster harbors higher lev-
els of hp relative to its eastern counterpart (0.0052, 95% CI¼
0.0050–0.0054). Consequently, both clusters harbor statisti-
cally different levels of genetic variation (t-test; t-value ¼
�5.22, degrees of freedom [df] ¼ 332.96, P¼ 3.10�10-7),
thus suggesting potentially different demographic histories.
We tested whether the split time between eastern and west-
ern D. melanogaster populations was older than within clus-
ters, and whether split time was positively correlated with
geographic distance. Prior to addressing this hypothesis, we
first evaluated the behavior of the PoolSNP and SNAPE-
pooled data sets in demographic inference and also evaluated
different methods for converting Pool-Seq data for use with
site frequency spectrum-based analysis.

Prior to estimating divergence times between and among
the European clusters, we assessed the behavior of our mo-
ment implementations using the summary statistic h across
models. We chose h because it has a well-estimated value in
D. melanogaster (h¼4Nel¼0.005; Lack et al. 2016) and thus
can serve as a biologically informed calibration parameter. We

FIG. 9. Geographically informative markers. (A) Number of retained PCs which maximize the DAPC model’s capacity to assign group membership.
Model trained on the phylogeographic clusters (dashed lines) or the country/state labels (solid line). (B) Absolute correlation for the 33,000
individual SNPs with highest weights onto the first 40 components of the PCA. Inset: Number of SNPs per PC. (C) Location of the 33,000 most
informative demographic SNPs across the chromosomes. (D) LOOCV of the DAPC model trained on the phylogeographic clusters. (E) LOOCV of
the DAPC model trained on the phylogeographic state/country labels. For panels (D) and (E), the y-axis shows the highest posterior produced by
the prediction model and the x-axis is the posterior assigned to the actual label classification of the sample. Also, for (D) and (E), marginal
histograms are shown.
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conducted these preliminary assessments in our simplest
model, SþSyM. Our results reveal conspicuous differences
between SNAPE-pooled and PoolSNP. PoolSNP produces pre-
cise estimates of h around the biological expectation, yet
SNAPE-pooled estimates are imprecise and often converge
to the bounds of the estimator (fig. 10A). This behavior is
consistent for both AF discretization methods (binomial and
counts). PoolSNP results also vary as a function of the AF
discretization method. Based on these results, we chose to
use only PoolSNP data for the implementation of our demo-
graphic inference.

To further evaluate the behavior of PoolSNP’s estimates as
a function of the AF discretization method, we explored
values of the raw parameter outputs by moments. We ex-
plored the values of the nui parameter (the ancestral popu-
lation size; see Materials and Methods). In general, the counts
method produced nui estimates which are sparser and less
stable, by an order of magnitude, relative to binomial draws
(nui sdbinom¼0.938, nui sdcounts¼3.72). In addition, nui
generated from the counts method produce highly skewed
distributions, particularly for jSFS estimated for population
pairs in eastern Europe (fig. 10B). Similar to SNAPE, estimates
from the counts method also showed the problematic ten-
dency to converge toward the parameter bounds (an

example for nui is shown in fig. 10B). Thus, for the remainder
of our analysis, we only report the binomial method.

We used AIC to test which of the four demographic mod-
els best fit the data: population divergence with symmetric
migration (SþSyM), population divergence with asymmetric
migration (SþAsyM), population divergence followed by a
bottleneck and growth with symmetric migration
(SþBGþSyM), or population divergence followed by a bot-
tleneck and growth with asymmetric migration
(SþBGþAsyM). We find that the SþAsyM was the best
model 71.5% of the time, followed by SþSyM 26.6% of the
time. Our more complex models (SþBGþSyM and
SþBGþAsyM) were not generally favored by AIC (fig. 10C).
We also evaluated dAIC, the difference in AIC between the
best and all other models. We found that SþAsyM and
SþSyM are generally the best models, whereas SþBGþSyM
and SþBGþAsyM underperform by at least four orders of
magnitude in terms of AIC (fig. 10D). We further evaluated
AIC performance as a function of the number of completed
runs. As described in the Materials and Methods, these de-
mographic inferences are computationally expensive and not
all models ran 50 times in the allotted time. This is of partic-
ular concern because all SþAsyM/SyM models ran 50 itera-
tions, whereas SþBGþSyM/AsyM ran, on average, 44.7 and

FIG. 10. Optimizing demographic models. (A) Estimates of h from moments as a function of input data: PoolSNP (positive distribution) or SNAPE
(negative distribution). We also show the AF discretization method (binomial, “binom,” top; counts, bottom). (B) Distribution of the parameter
nui produced by moments as a function of AF discretization strategy. The three colors represent pairwise comparisons done within and across
demographic clusters identified via PCA above. Specifically, pink: within eastern clusters (EE), blue: between clusters (EW), and green: within
western clusters (WW). (C) Proportion of times a given model was determined to be the best according to AIC. (D) Distribution of d(AICbest), the
difference between the best model’s AIC, and all other evaluated models. The y-axis shows the proportion of time a given model appeared in a
given d(AICbest) bin. Because the models were Log10transformed, all values were shifted by þ1 (to avoid Log10(0)¼Undefined). Colors corre-
spond to model type as labeled in the plot.
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35.2 times, respectively. As such, there is an inherent risk that
the more complex models (SþBGþSyM/AsyM) did not find
the best possible solution. We explored this possibility by
partitioning dAIC as a function of the number of runs com-
pleted (supplementary fig. S17, Supplementary Material on-
line). Our results indicate that the dAIC of the SþBGþSyM/
AsyM does not improve among population pairs which run
40þ or the full 50 iteration cycles. This suggests that our AIC
behavior is not a byproduct of the computational limit on
iteration times. We also evaluated the residuals for the four
demographic models, averaged across all population pairs
that we contrasted (supplementary fig. S18, Supplementary
Material online). These results show that, in general, all mod-
els slightly underestimate rare variants (<10%) and slightly
overestimate variants between 10% and 35%. For the remain-
der of analysis, we used the SþAsyM model to estimate di-
vergence times among populations.

Our analyses suggest that the eastern and western demo-
graphic clusters diverged, on average, 1,013 years ago (95% CI¼
887–1,139 years; median¼ 715 years; fig. 11A). Consistent with
biological expectation, divergence estimates within population
clusters were lower than between clusters. For example, the
eastern cluster is estimated to have a mean divergence within
populations of 294 years (95% CI ¼ 225–362 years; median ¼
231 years). The western cluster has a mean divergence within
populations of 648 years (95% CI ¼ 627–668 years; median ¼
626 years). We evaluated the relationship between spatial dis-
tance and divergence time. Similar to our proximity analysis
(fig. 8), the biological expectation is that populations in close
proximity are likely to display low divergence estimates. Our
results fit with this expectation, with neighboring populations
within clusters displaying low divergence estimates (fig. 11B).
Lastly, we estimated other population genetic parameters of
these population clusters such as effective population size (NE)
and migration rates (M). Our estimates of NE suggest that the
western cluster has larger NE (NE j west¼ 84,921; 95% CI ¼
83,373–86,468) relative to the eastern cluster (NE j east¼
62,287; 95% CI ¼ 60,207–64,368). In terms of asymmetrical
migration rates between clusters, our findings show that

the effective number of migrants per generation was higher
for west-into-east migration (Mwest!east ¼ 0.209 flies/gen;
95% CI ¼ 0.169–0.250) as compared with the opposite direc-
tion (Meast!west ¼ 0.178 flies/gen; 95% CI ¼ 0.161–0.196).

Discussion
Here we have presented a new, modular, and unified bioin-
formatics pipeline for processing, integrating and analyzing
SNP variants segregating in population samples of D. mela-
nogaster. We have used this pipeline to assemble the largest
worldwide data repository of genome-wide SNPs in D. mela-
nogaster to date, based both on previously published data
(DGN: Africa; Lack et al. 2015, 2016) as well as on new data
collected by our two collaborating consortia (DrosRTEC:
mostly North America; Machado et al. 2021; DrosEU: mostly
Europe; Kapun et al. 2020). We assembled this data set using
two SNP calling strategies that differ in their ability to identify
rare polymorphisms, thereby enabling future work studying
the evolutionary history of this species. We are dubbing this
data repository and the supporting bioinformatics tools DEST.

The DEST data repository was built using two different
SNP calling pipelines, SNAPE-pooled (Raineri et al. 2012)
and PoolSNP (Kapun et al. 2020). These two methods differ
fundamentally in their approach to SNP identification, yield
data sets amenable to different types of analyses and each
approach has its own specific limitations. The fundamental
difference between the data sets produced by these methods
is the number of rare and endemic SNPs identified. This dif-
ference will result in biased estimates of parameters from site
frequency spectrum-based demographic models. As a conse-
quence, some care should be taken when interpreting differ-
ent analyses based on these data sets.

SNAPE-pooled treats each Pool-Seq sample separately and
calculates the posterior probability that a site is polymorphic
based on read depth, alternate allele count, and a prior esti-
mate of nucleotide diversity; this approach was designed to
identify rare polymorphisms and has been validated using
both simulations and empirical approaches (Guirao-Rico
and Gonz�alez 2021). Here, we also provide evidence that
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FIG. 11. Demographic inference of European clusters. (A) Estimates of divergence time between and within the European clusters, pink: within
eastern clusters (EE), blue: between clusters (EW), and green: within western clusters (WW). (B) Divergence time as a function of the geographic
distance between population pairs. Color palette is consistent with panel (A). Correlation values are shown in the figure.
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rare and private SNPs identified by SNAPE-pooled are
enriched for true positives (fig. 8) after applying rigorous fil-
tering and excluding 20 population samples likely affected by
problems during library preparation which may have resulted
in elevated error rates.

The dataset based on SNAPE-pooled could therefore be
useful for studies that rely on rare SNPs, such as those inves-
tigating recent demographic events (Keinan and Clark 2012).
SNAPE-pooled has several limitations though. First, it is only
capable of handling Pool-Seq data. Second, because of the
hard filtering that we are imposing with our posterior prob-
ability cut-off, some true SNPs are being called as missing
data (see Materials and Methods). This problem is apparent
when comparing the number of polymorphisms identified
by SNAPE-pooled and PoolSNP (fig. 3). Third, any demo-
graphic inference done with SNAPE must be limited to cases
where a SNP is discovered in at least three populations or
more, because the caller appears to produce too many false
positives when only two populations are considered (see fig.
8B and our demographic inference with moments, which
uses a pairwise, two-population, model). In addition, studies
that rely on the SNAPE-pooled data set should exclude the
20 samples we flagged here (fig. 2A and supplementary table
S1, Supplementary Material online).

PoolSNP, on the other hand, is useful for analysis of com-
mon variants and allows studying aspects of population
structure and local adaptation based on shared polymor-
phism. Such analyses could include the inference of migra-
tion out of Africa (Kapopoulou et al. 2020), admixture
(Bergland et al. 2016), and back migration to Africa (Pool
and Aquadro 2006). PoolSNP is an extension of the ap-
proach developed elsewhere (Kofler, Orozco-terWengel,
et al. 2011; Kofler, Pandey, et al. 2011). PoolSNP necessarily
has a limited capacity to identify rare and private SNPs be-
cause it imposes global MAC and allele frequency filters.
Therefore, the more populations that are used for SNP call-
ing by PoolSNP, the less likely PoolSNP is to identify private
polymorphisms. Because PoolSNP filters out rare and private
polymorphisms, it is less sensitive to sequencing or library
preparation errors. Notably, the 20 flagged populations do
not have elevated pN/pS with MAC > 50. Additionally,
Kapun et al. (2020) demonstrated that these problematic
samples did not affect population genetic inference based
on common SNPs. The problematic samples derived from
the DrosRTEC studies likely do not have a major impact on
their results either as both Bergland et al. (2014) and
Machado et al. (2021) imposed stringent MAF filters.

PoolSNP has the added advantage that it can incorporate
in-silico pooled data sets wherein haplotype or genotype in-
formation are collapsed into allele frequencies (see Materials
and Methods). We took this approach by incorporating the
Drosophila Genome Nexus data set (DGN; Lack et al. 2016), a
data set that amalgamates whole-genome sequencing of in-
bred line data and haploid embryos from samples collected
around the world. Although the DGN data was originally
generated by multiple labs and run through a different map-
ping pipeline than what we used for the Pool-Seq data, these
samples appear to cluster tightly with geographically close

Pool-Seq samples (supplementary fig. S15, Supplementary
Material online and discussed in the Results). Thus, there
does not appear to be significant bias when combining these
data sets, at least when integrating information across the
genome. Nonetheless, some care should be taken when inter-
preting allele frequency differences based on data sets gener-
ated by different means. However, any real-time monitoring
activity will likely suffer from the rapidly changing landscape
of sequencing technologies.

One of the biggest challenges in the present “omics” era is
the rapidly growing number of complex large-scale data sets
which require technically elaborate bioinformatics know-how
to become accessible and utilizable. This hurdle often prohib-
its the exploitation of already available genomics data sets by
scientists without a strong bioinformatics or computational
background. To remedy this situation for the Drosophila evo-
lution community, our bioinformatics pipeline is provided as
a Docker image (to standardize across software versions, as
well as make the pipeline independent of specific operating
systems) and a new genome browser makes our SNP data set
available through an easy-to-use web interface (see supple-
mentary figs. S2 and S3, Supplementary Material online; avail-
able at https://dest.bio, last accessed September 6, 2021).

The DEST data repository and platform will enable the
population genomics community to address a variety of
longstanding, fundamental questions in ecological and evo-
lutionary genetics. The current data set might for instance
be valuable for providing a more accurate picture of the
demographic history of D. melanogaster populations, in
particular in Europe and North America, and with respect
to multiple bouts of out-of-Africa migration and recent
patterns of admixture. Such analyses can be strongly af-
fected by chromosomal inversions that are known to im-
pact LD and haplotype variation (Kapun and Flatt 2019;
Durmaz et al. 2020). We have therefore provided frequency
estimates for the seven most common cosmopolitan inver-
sions (In(2L)t, In(2R)NS, In(3L)P, In(3R)C, In(3R)K, In(3R)Mo,
and In(3R)Payne; Lemeunier and Aulard 1992), which
allows accounting for the effects of inversions in popula-
tion genetic inference (e.g., Kapopoulou et al. 2020).

The DEST data set will likewise be useful for an improved
understanding of the genomic signatures underlying both
global and local adaptation, including a more fine-grained
view of selective sweeps, their evolutionary origin and distri-
bution (e.g., see Glinka et al. 2003; Beisswanger et al. 2006;
Ometto et al. 2005; Stephan 2016; Kapun et al. 2020). In terms
of local adaptation, the broad spatial sampling across latitu-
dinal and longitudinal gradients on the North American and
European continents, encompassing a broad range of climate
zones and areas of varying degrees of seasonality, will allow
examining the parallel nature of local (clinal) adaptation in
response to similar environmental factors in greater depth
than possible before (e.g., Turner et al. 2008; Kolaczkowski et
al. 2011; Fabian et al. 2012; Bergland et al. 2014, 2016;
Reinhardt et al. 2014; Kapun et al. 2016, 2020; Waldvogel et
al. 2020; Bogaerts-M�arquez et al. 2021; Machado et al. 2021).

Another major opportunity provided by the DEST data set
lies in studying the temporal dynamics of evolutionary
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change. Sampling at dozens of localities across the growing
season and over multiple years will help to advance our un-
derstanding of the short-term population and evolutionary
dynamics of flies living in diverse environments, thereby pro-
viding novel insights into the nature of temporally varying
selection (Bergland et al. 2014; Wittmann et al. 2017;
Machado et al. 2021) and evolutionary responses to climate
change (e.g., Umina 2005; Rodr�ıguez-Trelles et al. 2013;
Waldvogel et al. 2020).

Moreover, by integrating these worldwide estimates of al-
lele frequencies, those from lab- and field-based “evolve and
resequence” experiments (E&R; Turner et al. 2011; reviewed in
Kofler and Schlötterer 2014; Schlötterer et al. 2014; Flatt 2020)
and those from mesocosm experiments (e.g., Rudman et al.
2019; Erickson et al. 2020), we might be able to gain deeper
insights into the genetic basis and evolutionary history of
variation in fitness components (e.g., Flatt 2020).

In addition to analyses of selection, the DEST data set can
also be used for preliminary demographic inference. Although
Pool-Seq data sets lack important haplotype information,
they have been successfully used in the past to generate de-
mographic and biogeographic insights into both model and
non-model species (e.g., Gautier et al. 2021; Machado et al.
2021; Nunez et al. 2021; see fig. 7). Our analyses suggest that
Pool-Seq data can be used for demographic model inference.
A major caveat in this endeavor is that, to the best of our
knowledge, Pool-Seq has not been exhaustively benchmarked
for demographic inference. As such, and until proper valida-
tion has been completed, we present our results as tools for
hypothesis generation and exploration.

Our results from moments are in full agreement with
basic biological expectations. For example, our estimates of
h are concordant with previously reported values (�0.005;
Lack et al. 2016). Moreover, our estimate of mean divergence
time between the eastern and western European clusters of
D. melanogaster is 1,013 years. This estimate is subject to
caveats, given the nature of Pool-Seq data and that future
validation may need to be done using different types of data.
Nevertheless, we note that this value is plausible as it is
well within the newer estimates for Drosophila’s expansion
into Europe from Africa (4,139 years; Kapopoulou et al.
2020). Although previous studies estimated D. melanogast-
er’s European expansion to have occurred around
13,000 years ago (e.g., Li and Stephan 2006; Hutter et al.
2007; Laurent et al. 2011), Kapopoulou et al. (2020) showed
that accounting for the role of asymmetric migration and
admixture reduces the estimated divergence time between
continents. Moreover, our mean estimates of NE for each
cluster (NE j east¼ 62,287, NE j west¼ 84,921) are also
within Kapopoulou et al.’s (2020) confidence interval for
modern European D. melanogaster NE (67,444�633,186).

Our analyses also revealed two notable behaviors that are
relevant to demographic analysis of Pool-Seq data. First, we
observed a remarkable difference between the method used
to discretize AFs from Pool-Seq, prior to SFS estimation.
Discretizing the data based on direct counts results in noisier
demographic estimates. Discretizing based on binomial prob-
abilities, on the other hand, produced consistent results

across comparisons. This behavior is due to the inherent noise
of directly converting Pool-Seq AFs (which are heavily af-
fected by coverage) to counts. Based on these observations,
we recommend the use of the binomial method of AF dis-
cretization for Pool-Seq analysis (Thia and Riginos 2019).
Second, we also observed a difference in the estimator’s be-
havior based on whether the PoolSNP or SNAPE-pooled data
were used to build the SFS. In general, PoolSNP generated h
estimates which converge toward 0.005, the biological expec-
tation for Drosophila. SNAPE-pooled estimates, on the other
hand, produced h distributions with high variance as well as a
tendency to converge toward the edge of the prior.
Interestingly, this type of run-to-the-edge pathological behav-
ior has been previously characterized (Rosen et al. 2018) and is
generally caused by two possible reasons: over-specified mod-
els, or, alternatively, noisy input SFS data. Given the relative
simplicity of the model used for optimization (SþSyM; diver-
gence with symmetrical-migration), it is likely that SNAPE’s
SNP calling approach is producing a high number of false
positives which affect model convergence (see also
Geographic Proximity Analysis and fig. 8). We therefore rec-
ommend PoolSNP over SNAPE-pooled for the purposes of
exploring or testing demographic hypotheses in cases where
only two populations are considered.

Although our analyses of the DEST sequencing data al-
ready led to novel insights into the evolutionary history of
Drosophila, we believe that the real value of the DEST data set
lies in the future: its long-term utility will grow as natural and
experimental populations are continually being sampled, re-
sequenced and added to the repository by the community of
Drosophila evolutionary geneticists. The pipeline that we have
established will make future updates to the data repository
straightforward. Furthermore, because it is not easily feasible
for any single research group to sample flies densely through
time and across a broad geographic range, the growing value
of the DEST data set will depend upon the synergistic collab-
oration among research groups across the globe, as exempli-
fied by the DrosRTEC and DrosEU consortia. Importantly, in
an era of rapidly decreasing sequencing costs, comprehensive
population genomic analyses are no longer limited by genetic
marker density but by the availability of biological samples
from standardized, collaborative long-term collection efforts
through space and time (e.g., Kapun et al. 2020; Machado et
al. 2021). In this vein, the collaborative framework presented
here might allow us, as a global community, to fill some im-
portant gaps in the current data repository: for example,
many areas of the world (notably Asia and South America)
remain largely uncharted territory in Drosophila population
genomics, and the addition of phased sequencing data (e.g.,
providing information on haplotypes, LD, linked selection)
will be crucially important for future analyses of demography,
selection, and their interplay.

We are convinced that the DEST platform will become a
valuable and widely used resource for scientists interested in
Drosophila evolution and genetics, and we actively encourage
the community to join the collaborative effort we are seeking
to build.
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Materials and Methods

Data Sources
The genomic data set presented here has been assembled
from a combination of Pool-Seq libraries and in silico pooled
haplotypes. We combined 246 Pool-Seq libraries of popula-
tion samples from Europe, North America, and the Caribbean
that were sampled through space and time by two collabo-
rating consortia in North America (DrosRTEC: https://web.
sas.upenn.edu/paul-schmidt-lab/dros-rtec/, last accessed
September 6, 2021) and Europe (DrosEU: http://droseu.net,
last accessed September 6, 2021) between 2003 and 2016. Of
these 246 Pool-Seq samples, 121 samples represent previously
unpublished samples generated by DrosEU, 48 DrosEU sam-
ples previously reported in Kapun et al. (2020), and 77 sam-
ples previously reported in Machado et al. (2021). In addition,
we integrated genomic data from >900 inbred or haploid
genomes from 25 populations in Africa, Europe, Australia, and
North America available from the Drosophila Genome Nexus
data set (DGN v1.1; Pool et al. 2012; Langley et al. 2012;
Grenier et al. 2015; Kao et al. 2015; Lack et al. 2015, 2016)
We further included the D. simulans haplotype (w501; Hu et al.
2013), built as part of the DGN data set, as an outgroup,
making this repository of 272 (246 Pool-Seq þ 25 DGN þ
1 D. simulans) whole-genome sequenced samples the largest
data set of genome-wide SNP polymorphisms available for D.
melanogaster to date.

Metadata
We assembled uniform metadata for all samples (supplemen-
tary table S1, Supplementary Material online). This informa-
tion includes collection coordinates, collection date, and the
number of flies per sample. Samples are also linked to biocli-
matic variables from the nearest WorldClim (Hijmans et al.
2005) raster cell at a resolution of 2.5� and to weather stations
from the Global Historical Climatology Network (GHCND;
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/) to allow for fu-
ture analyses of the environmental drivers that might underlie
genetic change. We also provide summaries of basic attributes
of each sample derived from the sequencing data including
average read depth, PCR duplicate rate, D. simulans contam-
ination rate, relative abundances of non-synonymous versus
synonymous polymorphisms (pN/pS), the number of private
polymorphisms, diversity statistics (Watterson’s h, p, and
Tajima’s D), and estimates of inversion frequencies.

Sample Collection
Most population samples contributed by the DrosEU and the
DrosRTEC consortia were collected in a coordinated fashion
to generate a consistent data set with minimized sampling
bias. In brief, fly collections were performed exclusively in
natural or seminatural habitats, such as orchards, vineyards,
and compost piles. For most European collections, flies were
collected using mashed banana, or apples with live yeast as
bait in traps placed at sampling sites for multiple days to
attract flies, or by sweep netting (see Kapun et al. 2020 for
more details). For North American collections, flies were col-
lected by sweep-net, aspiration, or baiting over natural

substrate or using baited traps (see Behrman et al. 2018;
Machado et al. 2021 for details). Samples were either field-
caught flies (n¼ 227), from F1 offspring of wild-caught
females (n¼ 7), from a mixture of F1 and wild-caught flies
(n¼ 7), or from flies kept as isofemale lines in the laboratory
for five generations or less (n¼ 4); see supplementary table
S1, Supplementary Material online for more information. To
minimize cross-contamination with the closely related sym-
patric sister species D. simulans, we only sequenced male D.
melanogaster specimens, allowing for higher confidence dis-
crimination between the two species based on the morphol-
ogy of male genitalia (Capy and Gibert 2004; Markow and
O’Grady 2006). Samples were stored in 95% ethanol at�20�C
before DNA extraction.

DNA Extraction and Sequencing
The DrosEU and DrosRTEC consortia centralized extractions
from pools of flies. DNA was extracted either using
chloroform/phenol-based (DrosEU: Kapun et al. 2020) or lith-
ium chloride/potassium acetate extraction protocols
(DrosRTEC: Bergland et al. 2014; Machado et al. 2021) after
homogenization with bead beating or a motorized pestle.
DrosEU samples from the 2014 collection were sequenced
on an Illumina NextSeq 500 sequencer at the Genomics
Core Facility of the Pompeu Fabra University in Barcelona,
Spain. Libraries of the previously unpublished DrosEU samples
from 2015 and 2016 were constructed using the Illumina
TruSeq PCR Free library preparation kit following the manu-
facturer’s instructions and sequenced on the Illumina HiSeq X
platform as paired-end fragments with 2� 150 bp length at
NGX Bio (San Francisco, California, USA). The previously
published samples of the DrosRTEC consortium were pre-
pared and sequenced on GAIIX, HiSeq2000, or HiSeq3000
platforms, as described in Bergland et al. (2014) and
Machado et al. (2021). For information on DNA extraction
and sequencing methods of the various DGN samples, see
Lack et al. (2016) and others (Langley et al. 2012; Pool et al.
2012; Grenier et al. 2015; Kao et al. 2015).

Mapping Pipeline
The joint analysis of genomic data from different sources
requires the application of uniform quality criteria and a com-
mon bioinformatics pipeline. To accomplish this, we devel-
oped a standardized pipeline that performs filtering, quality
control and mapping of any given Pool-Seq sample (see sup-
plementary fig. S1, Supplementary Material online). This pipe-
line performs quality filtering of raw reads, maps reads to a
hologenome (see below), performs realignment and filtering
around indels, and filters for mapping quality. The output of
this pipeline includes quality control metrics, bam files, pileup
files, and allele frequency estimates for every site in the ge-
nome (gSYNC, see below). Our pipeline is provided as a
Docker image and will facilitate the integration of future
samples to extend the worldwide D. melanogaster SNP data
set presented here.

The mapping pipeline includes the following major
steps. Prior to mapping, we removed sequencing adapters
and trimmed the 30 ends of all reads using cutadapt
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(Martin 2011). We enforced a minimum base quality score
�18 (-q flag in cutadapt) and assessed the quality of
raw and trimmed reads with FASTQC. Trimmed reads
with minimum length <75 bp were discarded and only intact
read pairs were considered for further analyses. Overlapping
paired-end reads were merged using bbmerge (v. 35.50;
Bushnell et al. 2017). Trimmed reads were mapped against
a compound reference genome (“hologenome”) consisting
of the genomes of D. melanogaster (v.6.12) and D. simulans
(Hu et al. 2013) as well as genomes of common commensals
and pathogens, including Saccharomyces cerevisiae (GCF_
000146045.2), Wolbachia pipientis (NC_002978.6),
Pseudomonas entomophila (NC_008027.1), Commensalibacter
intestine (NZ_AGFR00000000.1), Acetobacter pomorum (NZ_
AEUP00000000.1), Gluconobacter morbifer (NZ_AGQV000
00000.1), Providencia burhodogranariea (NZ_AKKL0000
0000.1), Providencia alcalifaciens (NZ_AKKM01000049.1),
Providencia rettgeri (NZ_AJSB00000000.1), Enterococcus faecalis
(NC_004668.1), Lactobacillus brevis (NC_008497.1), and
Lactobacillus plantarum (NC_004567.2), using bwa mem (v.
0.7.15; Li 2013) with default parameters. We retained reads
with mapping quality greater than 20 as well as those with
no secondary alignment using samtools (Li et al. 2009). PCR
duplicate reads were removed using Picard MarkDuplicates
(v.1.109; http://broadinstitute.github.io/picard/, last accessed
September 6, 2021). Sequences were realigned in the proximity
of insertions–deletions (indels) with GATK (v3.4-46; McKenna
et al. 2010). We identified and removed any reads that mapped
to the D. simulans genome using a custom python script, fol-
lowing methods outlined previously (Kapun et al. 2020;
Machado et al. 2021; for a more in-depth analysis of D. simulans
contamination, see Wallace et al. 2021). Although this method
of decontamination by D. simulans accurately estimates con-
tamination rate and removes the vast majority of D. simulans
reads (Machado et al. 2021), care should be taken when ana-
lyzing samples with higher contamination rates at sites that are
shared polymorphisms between the two species.

Incorporation of the DGN Data Set
We incorporated population allele frequency estimates de-
rived from inbred line and haploid embryo sequencing data
from populations sampled throughout the world using an in
silico pooling approach. These samples have been previously
collected and sequenced by several groups (Langley et al.
2012; Mackay et al. 2012; Pool et al. 2012; Grenier et al.
2015; Kao et al. 2015; Lack et al. 2015, 2016) and together
form the Drosophila Genome Nexus data set (DGN; Lack et al.
2015, 2016). We included 25 DGN populations with�5 indi-
viduals per population, plus the D. simulans haplotype w501

built as part of the DGN data set. The DGN populations that
we used are primarily from Africa (n¼ 18) but also include
populations from Europe (n¼ 2), North America (n¼ 3),
Australia (n¼ 1), and Asia (n¼ 1). The complete list of
DGN populations, and samples, used in this data set can be
found in supplementary table S1, Supplementary Material
online.

To incorporate the DGN populations into the DrosEU
and DrosRTEC Pool-Seq data sets, we used the pre-

computed FASTA files (“Consensus Sequence Files” from
https://www.johnpool.net/genomes.html, last accessed
September 6, 2021) and calculated allele frequencies at every
site, for each population, using custom bash scripts. We cal-
culated allele frequencies for each population by summing
reference and alternative allele counts across all individuals
using the precomputed haplotype FASTA files. Because esti-
mates of allele frequencies and total allele counts for the DGN
samples only consider unambiguous IUPAC codes, heterozy-
gous sites or sites masked as N’s in the original FASTA files
were converted to missing data. We used liftover (Kuhn et al.
2013) to translate genome coordinates to Drosophila refer-
ence genome release 6 (dos Santos et al. 2015) and formatted
them to match the gSYNC format (described below). Scripts
for reformatting the DGN data can be found in the GitHub
repository for this project (https://github.com/DEST-bio/
DEST_freeze1, last accessed September 6, 2021).

SNP Calling Strategies
We used two complementary approaches to perform SNP
calling. The first was PoolSNP (Kapun et al. 2020), a heuristic
tool which identifies polymorphisms based on the combined
evidence from multiple samples. This approach is similar to
other common Pool-Seq variant calling tools (Koboldt et al.
2009, 2012; Kofler, Orozco-terWengel, et al. 2011; Kofler,
Pandey, et al. 2011). PoolSNP integrates allele counts across
multiple independent samples and applies stringent MAC
and MAF thresholds for variant detection. PoolSNP is
expected to be good at detecting variants present in multiple
populations but is not very sensitive to rare private alleles. The
second approach was SNAPE-pooled (Raineri et al. 2012), a
tool that identifies polymorphic sites based on Bayesian in-
ference for each population independently using pairwise
nucleotide diversity estimates as a prior. SNAPE-pooled is
expected to be more sensitive to rare private polymorphisms
(Raineri et al. 2012; Guirao-Rico and Gonz�alez 2021). The SNP
calling step is built using the snakemake (Mölder et al. 2021)
pipeline and the parameters to run the two callers can be
found at https://github.com/DEST-bio/DEST_freeze1 (last
accessed September 6, 2021).

gSYNC Generation and Filtering
Our pipeline utilizes a common data format to encode allele
counts for each population sample (SYNC; Kofler, Pandey,
et al. 2011). A “genome-wide SYNC” (gSYNC) file records
the number of A, T, C, and G for every site of the reference
genome. Because gSYNC files for all populations have the
same dimension, they can be quickly combined and passed
to a SNP calling tool. They can be filtered and are also rela-
tively small for a given sample (�500 Mb), enabling efficient
data sharing and access. The gSYNC file is analogous to the
gVCF file format as part of the GATK HaplotypeCaller ap-
proach (McKenna et al. 2010) but is specifically tailored to
Pool-Seq samples.

We generated gSYNC files for both PoolSNP and SNAPE.
To generate a PoolSNP gSYNC file, we first converted BAM
files to the MPILEUP format with samtools mpileup using the -
B parameter to suppress recalculations of per-base alignment
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qualities and filtered for a minimum mapping quality with the
parameter -q 25. Next, we converted the MPILEUP file con-
taining mapped and filtered reads to the gSYNC format using
custom python scripts. To generate a SNAPE-pooled gSYNC
file, we ran the SNAPE-pooled version specific to Pool-Seq
data for each sample in MPILEUP format with the following
parameters: h¼ 0.005, D¼ 0.01, prior¼‘informative’,
fold¼‘unfolded’, and nchr¼number of flies (x2 for autosomes
and x1 for the X and Y chromosomes) following Guirao-Rico
and Gonz�alez (2021). We converted the SNAPE-pooled out-
put file to a gSYNC file containing the counts of each allele
per position and the posterior probability of polymorphism as
defined by SNAPE-pooled using custom python scripts. We
only considered positions with a posterior probability�0.9 as
being polymorphic and with a posterior probability �0.1 as
being monomorphic. In all other cases, positions were marked
as missing data.

We masked gSYNC files for PoolSNP and SNAPE-pooled
using a common set of filters. Sites were filtered from gSYNC
files if they had: 1) minimum read depth <10; 2) maximum
read depth>the 95% coverage percentile of a given chromo-
somal arm and sample; 3) located within repetitive elements
as defined by RepeatMasker; 4) within 5-bp distance up- and
downstream of indel polymorphisms identified by the GATK
IndelRealigner. Filtered sites were converted to missing data in
the gSYNC file. The location of masked positions for every
sample was recorded as a BED file.

VCF Generation
We generated three versions of the variant files, which differ
in their inclusion of the DGN samples and the SNP calling
strategy. For PoolSNP variant calling, we generated two var-
iant tables: the first version incorporates all 272 samples of the
Pool-Seq (DrosRTEC, DrosEU) and in silico Pool-Seq popula-
tions (DGN). The second version only considers the 246 Pool-
Seq samples excluding the DGN samples (used for compar-
ison to the SNAPE-pooled version). The third file is based on
SNAPE-pooled and contains 246 Pool-Seq samples only.

To generate the PoolSNP versions, we combined the
masked PoolSNP-gSYNC files into a two-dimensional matrix,
where rows correspond to each position in the reference
genome and columns describe chromosome, position, and
reference allele, followed by allele counts in SYNC format for
every sample in the data set. This combined matrix was then
subjected to variant calling using PoolSNP, resulting in a VCF-
formatted file. We performed SNP calling only for the major
chromosomal arms (X, 2L, 2R, 3L, 3R) and the 4th (dot) chro-
mosome. Data for heterochromatic arms of the autosomes,
the Y chromosome, and the mitochondrial genome can be
extracted from the MPILEUP files provided at https://dest.bio
(last accessed September 6, 2021).

We evaluated the choice of two heuristic parameters ap-
plied to PoolSNP: global MAC and global MAF. Using all 272
samples, we varied MAF (0.001, 0.01, 0.05) and MAC (5-100)
and called SNPs at a randomly selected 10% subset of the
genome. Based on SNP annotations with SNPeff (version 4.3;
Cingolani et al. 2012), we calculated pN/pS, which is the ratio
of nonsynonymous to synonymous polymorphisms, and

used this value to tune our choice of MAF and MAC and
to identify egregious outlier samples. We found that a global
MAC¼ 50 provided qualitatively identical estimates of pN/pS

across all populations (fig. 2B) and that the results were in-
sensitive to MAF (results not shown). We therefore used
these parameters for genome-wide variant calling (see
Identification and Quality Control of SNP Polymorphisms).
We kept a third heuristic parameter, the missing data rate,
constant at a minimum of 50%.

To generate the SNAPE-pooled VCF files, we combined the
246 masked SNAPE-pooled gSYNC files into a two-
dimensional matrix, as described above, and generated a
VCF formatted output based on allele counts for any site
found to be polymorphic in one or more populations. We
evaluated pN/pS across a range of local MAF thresholds (fig.
2C) and found that pN/pS is largely insensitive to local MAF,
once accounting for some problematic samples (see below).

Final VCF files with annotations from SNPeff (version 4.3;
Cingolani et al. 2012) were stored in VCF and BCF (Danecek et
al. 2011) file formats alongside an index file in TABIX format
(Li 2011). Besides VCF files, we also stored SNP data in the
GDS file format using the R package SeqArray (Zheng et al.
2017).

Inversion Frequency Estimates
We estimated the frequencies of seven cosmopolitan inver-
sion polymorphisms (In(2L)t, In(2R)NS, In(3L)P, In(3R)C,
In(3R)K, In(3R)Mo, In(3R)Payne) based on a previously pub-
lished panel of diagnostic SNP markers that are in tight LD
with the corresponding inversions (Kapun et al. 2014). As
previously described (Kapun et al. 2016), we isolated the
positions in the VCF file of all marker SNPs and estimated
the frequency of each inversion as the mean frequency of
inversion-specific alleles at all marker SNPs.

Population Genetic Analyses
We estimated allele frequencies for each site across popula-
tions as the ratio of the alternate allele count to the total site
coverage. We also calculated per-site averages for nucleotide
diversity (p, Nei 1987), Watterson’s h (Watterson 1975) and
Tajima’s D (Tajima 1989) across all sites or in nonoverlapping
windows of 100, 50, and 10 kb length. To estimate these sum-
mary statistics, we converted masked gSYNC files (with posi-
tions filtered for repetitive elements, low and high read depth,
and proximity to indels; see gSYNC Generation and Filtering)
back to the MPILEUP format using custom-made scripts. The
MPILEUP files were processed using npstat v.1 (Ferretti et al.
2013) with parameters -maxcov 10000 and -nolowfreq m¼ 0
in order to include all filtered positions for analysis. We only
considered sites identified as being polymorphic by PoolSNP
or SNAPE-pooled for analysis, using the -snpfile option of
npstat. For the DGN populations, chromosome-wide sum-
mary statistics were estimated only for samples with less
than 50% missing data per chromosome. Due to small sample
sizes, Tajima’s D was not estimated for seven African DGN
populations that consisted of only five haploid embryos. To
compare population genetic estimates between the PoolSNP
versus SNAPE-pooled data sets, we performed Pearson’s
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correlation on 226 populations present in both data sets (see
Identification and Quality Control of SNP Polymorphisms)
using the stats package of R v.3.6.3. The effects of pool size
(number of individuals sampled per population) on genome-
wide estimates of p, Watterson’s h and Tajima’s DS estimates
were examined for European and North American popula-
tions using the PoolSNP data set and a linear model in R
v.3.6.3. Finally, for 48 European populations we estimated
Pearson’s correlations between p, Watterson’s h and
Tajima’s D as estimated from the PoolSNP data set versus
previous estimates by Kapun et al. (2020) using the stats
package of R v3.6.3.

Next, we examined patterns of between-population differ-
entiation by calculating window-wise estimates of pairwise
FST, based on the method from Hivert et al. (2018) imple-
mented in the computePairwiseFSTmatrix() function of the R
package poolfstat (v1.1.1). This analysis was performed for the
data set composed of 271 samples (all samples excluding the
D. simulans reference strain) processed with PoolSNP, focus-
ing on SNPs shared across the whole data set. Finally, we
averaged pairwise FST within and among phylogeographic
clusters identified in our analyses: Africa (17 samples),
North America (76 samples), Eastern Europe (83 samples),
and Western Europe (93 samples). Samples from China and
Australia were not included due to limited sampling. These
FST tracks at windows sizes of 100, 50, and 10 kb are available
at https://dest.bio (last accessed September 6, 2021; supple-
mentary figs. S2 and S3, Supplementary Material online).

To assess population structure in the worldwide data set,
we applied principal components analysis (PCA), population
clustering, and population assignment based on a DAPC
(Jombart et al. 2010) to all 271 PoolSNP-processed samples.
For these analyses, we subsampled a set of 100,000 SNPs
spaced apart from each other by at least 500 bp. We opti-
mized our models using cross-validation by iteratively divid-
ing the data as 90% for training and 10% for learning. We
extracted the first 40 PCs from the PCA and ran Pearson’s
correlations between each PC and all loci. We subsequently
extracted the top 33,000 SNPs with large and significant cor-
relations to PCs 1–40. We chose the 33,000 number as a
compromise between panel size and differentiation power.
For example, depending on the number of individuals sur-
veyed, these 33,000 loci can discern genetic differentiation (s)
between two populations with parametric FST of 0.001–
0.0001 for sample sizes (n) of 10–1,000. These estimates
come from the phase change formula: s � FST ¼ 1/(nm)1/2

(Patterson et al. 2006). Here, the two populations were sam-
pled for n/2 individuals and genotyped at m¼ 33,000
markers. Furthermore, we included SNPs as a function of
the percent variance explained by each PC. PCAs, clustering,
and assignment based DAPC analyses were carried out using
the R packages FactoMiner (v. 2.3), factoextra (v. 1.0.7) and
adegenet (v. 2.1.3), respectively.

Demographic Inference with Moments
To evaluate the efficacy of PoolSNP and SNAPE-pooled in
inferring reasonable demographic parameters, we ran pair-
wise comparisons of European Drosophila populations under

four basic demographic models: 1) population divergence
with symmetric migration (SþSyM), 2) population diver-
gence with asymmetric migration (SþAsyM), 3) population
divergence followed by a bottleneck and growth with sym-
metric migration (SþBGþSyM), and 4) population diver-
gence followed by a bottleneck and growth with
asymmetric migration (SþBGþAsyM). We fit these models
using the python package moments (Jouganous et al. 2017).
We converted our data to the moments input format using
the genomalicious (Thia and Riginos 2019) function dadi_in-
puts_pools(), using either the “counts” or the “probs” (here-
after “binomial”) methods. These methods are used to
convert Pool-Seq allele frequency data, which has a variable
denominator (read depth), to the integer-based count of the
site frequency spectrum (SFS) used by moments and other
SFS analyses (Gutenkunst et al. 2009). The “counts” method
rounds the allele counts to the nearest integer based on the
number of chromosomes sampled. The “binomial” method
generates allele counts based on a binomial draw given the
observed allele frequency and the number of chromosomes.
For all analyses, we used the mean effective coverage (Feder et
al. 2012) per population as the number of chromosomes
sampled. We only focused on autosomal SNPs and only
used populations that passed quality control (fig. 2).

Our model estimates a different number of parameters
depending on its type. For instance, the SþSyM model esti-
mates three core parameters: the divergence time between
populations (Ts), the migration rate between populations
(mi$j) and the ancestral population sizes (nui). The nui,
Ts and mi$j parameters are initially drawn from uniform
priors with user-defined upper boundaries of 10, 5, and 50,
and lower boundaries of 1.0�10-5, 1.0�10-5, and 0, respec-
tively. The SþAsyM model includes all above parameters, but
has explicit asymmetric migration parameters (i.e., mi!j and
mj!i) which are also parametrized as uniform distributions
with 0–50 parameter bounds. Models SþBGþSyM and
SþBGþAsyM are similar to their SþAsyM and SþSyM coun-
terparts, with the addition of the initial (nuiB) and final (nuiF)
sizes of each population. These are also parametrized as uni-
form distribution bounded between 1.0�10-5 and 10.
Overall, we explored the behavior of the estimators for two
allele frequency (AF) discretization strategies (counts and bi-
nomial) and two SNP callers (SNAPE and PoolSNP).

Our pipeline estimates a joint SFS (jSFS) from the discre-
tized AF data for a given population pair. These are always
folded jSFS to account for unknown ancestral states. For
computational purposes, we did not evaluate every possible
pairwise combination in the DEST data set. Instead, we ran-
domly sampled 1,200 population pairs drawn from European
populations that passed quality filtering (supplementary table
S1, Supplementary Material online). The moments simula-
tions were run with a maximum of 50 iterations. It is impor-
tant to note that running these demographic models is
computationally expensive and some individual runs fail to
converge across the 50 iterations, and thus some models did
not run all 50 times. Nevertheless, we explicitly explored the
consequences of the total number of completed runs in the
performance of the model selection.
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Model selection was performed using maximum log-
likelihood and Akaike’s information criterion (AIC) for each
completed simulation run. For each implementation per pop-
ulation pair, the simulation with lowest AIC was retained as
the “best fit” for later comparison. The model fit was observed
in a subset of models run via residuals as well. Raw model
parameter outputs were converted to interpretable units in
accordance with the moments manual. To this end, we used
known biological constants for Drosophila, namely l, L, and
generations per year (g). The mutation rate, l, was set to
2.8�10-9 (Keightley et al. 2014). L is the sum of the autosomal
chromosome arms minus the median of the number of
masked sites across all of the European (DrosEU) samples.
In moments, outputs are scaled in units of 2Nref, where Nref
is the ancestral population size (Nref ¼h/4lL). Divergence
time (2Nref Ts) was converted to chronological time assum-
ing 15 generations per year (Pool 2015).

Web-Based Genome Browser
Our HTML-based DEST browser (supplementary fig. S2,
Supplementary Material online) is built on a JBrowse
Docker container (Buels et al. 2016), which runs under
Apache on a CentOS 7.2 Linux x64 server with 16 Intel
Xeon 2.4 GHz processors and 32 GB RAM. It implements a
hierarchical data selector that facilitates the visualization and
selection of multiple population genetic metrics or statistics
for all 271 samples based on the PoolSNP-processed data set,
taking into account sampling location and date. Importantly,
our genome browser provides a portal for downloading allelic
information and precomputed population genetics statistics
in multiple formats (supplementary figs. S2A and C and S3,
Supplementary Material online), a usage tutorial (supplemen-
tary fig. S2B, Supplementary Material online) and versatile
track information (supplementary fig. S2D, Supplementary
Material online). Bulk downloads of full variation tracks are
available in BigWig format (Kent et al. 2010) and Pool-Seq files
(in VCF format) are downloadable by population and/or sam-
pling date using custom options from the Tools menu (sup-
plementary fig. S2C, Supplementary Material online). All data,
tools, and supporting resources for the DEST data set, as well
as reference tracks downloaded from FlyBase (v.6.12) (dos
Santos et al. 2015), are freely available at https://dest.bio
(last accessed September 6, 2021).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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