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Fluctuations in the strength and direction of natural selection through time are a ubiquitous feature of life on Earth. One evolutionary 
outcome of such fluctuations is adaptive tracking, wherein populations rapidly adapt from standing genetic variation. In certain circum-
stances, adaptive tracking can lead to the long-term maintenance of functional polymorphism despite allele frequency change due to 
selection. Although adaptive tracking is likely a common process, we still have a limited understanding of aspects of its genetic archi-
tecture and its strength relative to other evolutionary forces such as drift. Drosophila melanogaster living in temperate regions evolve 
to track seasonal fluctuations and are an excellent system to tackle these gaps in knowledge. By sequencing orchard populations col-
lected across multiple years, we characterized the genomic signal of seasonal demography and identified that the cosmopolitan inver-
sion In(2L)t facilitates seasonal adaptive tracking and shows molecular footprints of selection. A meta-analysis of phenotypic studies 
shows that seasonal loci within In(2L)t are associated with behavior, life history, physiology, and morphological traits. We identify can-
didate loci and experimentally link them to phenotype. Our work contributes to our general understanding of fluctuating selection and 
highlights the evolutionary outcome and dynamics of contemporary selection on inversions. 
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Introduction 
Species living in rapidly fluctuating environments are exposed to 
spatially and temporally varying selection (Bell 2010). If species 
harbor polymorphisms that are beneficial in 1 selective environ-
ment but not the other, local adaptation will be evident from 
shifts in allele frequency across space and time, a process known 
as adaptive tracking (Botero et al. 2015). Context-dependent fitness 
effects can result in the long-term maintenance of functional gen-
etic variation in populations and between species (Hedrick 1976), 
and can also drive the rapid turnover of new, transiently balanced 
polymorphisms (Bürger and Gimelfarb 2002). Recent theoretical 
work demonstrates that multilocus adaptive tracking is possible 
(Wittmann et al. 2017), leaves distinct molecular signatures at 
linked sites (Wittmann et al. 2023), and can be facilitated by eco-
logical factors such as seasonal population booms and busts 
(Bertram and Masel 2019). Moreover, empirical studies have pro-
vided evidence that adaptive tracking can be quantified in natural 
and experimental populations (reviewed in Johnson et al. 2023). 
Yet, we still have a limited understanding of the ecological drivers 
that underlie adaptive tracking, its effects on genetic diversity, 
and its genetic architecture. 

Fruit flies (Drosophila melanogaster) living in temperate habitats 
are a premier system for understanding the evolutionary dynam-
ics of adaptive tracking. Fruit flies have short generation times 

(∼10 to 15 days), produce many generations per year (∼15 genera-
tions; Pool 2015), and experience fluctuating selection across the 
changing seasons (Behrman et al. 2015). For example, variations 
in stress tolerance and life history enable some individuals to bet-
ter survive the winter months while others more effectively ex-
ploit resources in the growing season (Behrman et al. 2015;  
Rajpurohit et al. 2018; Erickson et al. 2020; cf. Yu and Bergland 
2022). These observations suggest that seasonal adaptation oper-
ates through a resource-allocation tradeoff between reproduction 
and survival that is also mirrored across latitudinal gradients 
(Schmidt and Conde 2006). Genomic analyses have supported 
this hypothesis and identified thousands of loci whose allele fre-
quencies (AF) change between seasons across multiple localities 
and display parallel shifts in allele frequency across spatial gradi-
ents (Bergland et al. 2014; Machado et al. 2021; Rodrigues et al. 
2021). While these findings have highlighted that seasonal adap-
tive tracking is a quantifiable phenomenon across fly genomes, 
identifying candidate genes of interest underlying seasonal adap-
tation has remained a challenge. An issue-driven in part by a lack 
of dense temporal resolution across these seasonal datasets that 
have primarily focused on paired spring-fall sampling (Machado 
et al. 2021). Nonetheless, in a recent analysis of seasonal sampling 
across 2 continents, Machado et al. (2021) identified the break-
points of cosmopolitan inversions, particularly of the 10 Mb 
In(2L)t inversion, as regions enriched for loci that evolve by 
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seasonal adaptive tracking. This is a notable finding given that 
adaptive loci that exist as chromosomal inversions have been ex-
tensively studied for decades and were among the first examples 
of loci underlying adaptations to a fluctuating environment 
(Dobzhansky and Wright 1943; Charlesworth 2016; Kapun et al. 
2023). 

In this paper, we use a combination of population and quanti-
tative genetics to study short-term demography and seasonal evo-
lution in D. melanogaster. We address 3 basic questions: (1) What 
are the impacts of seasonal population booms and busts on pat-
terns of standing genetic variation in fruit flies? (2) Are inversions 
enriched for signals of seasonal adaptive tracking, compared 
to the rest of the genome? And, (3) what are the candidate loci 
and candidate phenotypes associated with seasonal selection 
in overwintering Drosophila? To answer these questions, we 
combined a densely sampled genomic time-series collected in 
Charlottesville, VA (USA) with previously published fly genomic 
datasets, including the Drosophila Evolution over Space and Time 
(DEST) dataset that contains samples from multiple temperate 
populations worldwide (Kapun et al. 2021). This new dataset 
from Charlottesville, VA, represents a valuable addition to exist-
ing panels of temporal variation in this species (e.g. Bergland 
et al. 2014; Machado et al. 2021), as it is composed of samples col-
lected every 2 weeks from late spring to late fall across 3 years. 
This dataset allows for seasonal analyses of adaptation and dem-
ography with much greater levels of granularity beyond the paired 
spring-fall scheme of previous studies. Using these data, we char-
acterized genomic signatures of seasonal population expansions 
and contractions across the genome (i.e. “boom-and-bust” demog-
raphy; Ives 1970; Biémont 1985). Then, we identified regions of the 
genome associated with seasonal changes that exceed expecta-
tions based on chance and demographic history, paying special 
attention to inversions including In(2L)t. Finally, using a 
meta-analysis of the Drosophila Genetics Reference Panel (DGRP,  
Mackay et al. 2012), we show that dozens of phenotypes are af-
fected by In(2L)t and experimentally validate the association be-
tween In(2L)t inversion status and 1 ecologically important 
phenotype. 

Overall, our data reveals rapid evolutionary changes in re-
sponse to seasonally varying selection and suggests connections 
between phenotype, genotype, and the environment at In(2L)t. 
We show that Drosophila populations experience strong bouts of 
drift resulting from annual cycles of boom-and-bust demography. 
Allele frequency shifts through time are correlated with variation 
in aspects of temperature weeks prior to collection, and the inver-
sion is associated with a host of ecologically important pheno-
types. These results suggest that we can differentiate the 
footprints of natural selection from the background signal of 
boom-and-bust demography. Moreover, our work also provides 
insight into the evolution of adaptive inversions more generally 
by showing that adaptive alleles within the inversion are both old 
trans-species and trans-continental polymorphisms, as well as 
young and population-specific. This finding suggests that 2 types 
of selection may have occurred at In(2L)t: balancing selection, oper-
ating at the level of the inversion across continents, and directional 
selection operating at the levels of specific populations that may 
drive adaptive fine-tuning in response to local conditions. 

Materials and methods 
Fly sampling 
New samples for this study were collected at an orchard in 
Charlottesville, VA (Carter Mountain Orchard, 37.99N, 

78.47W) from 2016 to 2019. Collections from 2016 to 2018 
were done using aspirators and netting every 2 weeks starting 
in mid-June when peaches come into season in central VA and 
ending in mid-December at the end of the fall apple season. 
The collection in 2019 was done at the beginning of the grow-
ing season in June. Because D. melanogaster is phenotypically 
similar to its sister taxa D. simulans, we determined species 
identity using the male offspring produced from isofemale 
lines set from wild-caught flies. D. melanogaster isofemale off-
spring were frozen in ethanol and stored at −20°C prior to 
sequencing. 

DNA extraction, sample preparation, 
and sequencing 
We prepared 2 sets of samples: Pool-seq samples, and individual 
DNA-seq libraries. All libraries were made using G1 male offspring 
from wild-caught isofemale lines. For pool-seq, we prepared 37 li-
braries (see the number of pooled flies in Supplementary Table 1). 
Pool-seq sequencing, filtering, and mapping were done following 
the protocols outlined in (Kapun et al. 2021) using the DEST dock-
erized pipeline (https://github.com/DEST-bio/DEST_freeze1). 
Individual DNA libraries were made from samples collected in 
2016, 2018, and 2019. For 2016, we prepared 119 individual sam-
ples collected across the growing season. For 2018, we prepared 
libraries from 43 individuals collected in the fall (2018 
November 29). For 2019, we prepared libraries collected from 
41 samples in the spring (2019 June 14). Both 2018 and 2019 li-
braries were built using a Nextera reduced-volume protocol 
(Baym et al. 2015). Sequencing of the 2016 individuals was 
done on an Illumina HiSeq X (2 × 150 bp; paired-end configur-
ation). Sequencing for the 2018 and 2019 individuals was done 
on an Illumina Novaseq (2 × 150 bp). Reads were mapped to 
the D. melanogaster genome (NCBI acc. GCA_000001215.4). For 
the individual sequences, data were processed using a bioinfor-
matics pipeline that includes samtools/bcftools (Li et al. 2009), 
Picard, and the Genome Analysis Toolkit (GATK; Van der 
Auwera and O’Connor 2020). Additional bioinformatic details 
can be found in Supplementary Methods 1, and in our GitHub 
repository (https://github.com/Jcbnunez/Cville-Seasonality- 
2016-2019). 

Other D. melanogaster datasets used 
D. melanogaster data was downloaded from 4 public repositories: 
DEST (Kapun et al. 2021), Drosophila Genetic Reference Panel 
(DGRP v2; Mackay et al. 2012), Global Diversity Lines (GDLs;  
Grenier et al. 2015), and Drosophila Population Genomics Project 
(DPGP v3; Pool et al. 2012; Lack et al. 2015). In addition, we used re-
sequenced inbred line data from Maine and Pennsylvania (PA) 
(Behrman et al. 2018). We used FlyBase (Gramates et al. 2022; re-
lease FB2023_06) to find information on gene functions and 
phenotypes.  

Temporal analysis using principal component 
analyses 
To characterize patterns of spatial and temporal genetic variation 
across the temperate range of D. melanogaster, we performed prin-
cipal component analyses (PCA) as implemented in R’s 
FactoMiner v2.6 package (Lê et al. 2008). Principal Component 
Analyses (PCAs) were conducted on the pool-seq time series 
data combining Charlottesville data with that of DEST (Fig. 1a 
and b; Supplementary Fig. 1). For these analyses, we applied a 
minimum allele frequency filter of 1% across populations. We 
also applied a mean effective coverage (Neff) filter of 28 (see  
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explanation below). Neff was calculated as in (Kolaczkowski et al. 
2011; Feder et al. 2012): 

Neff = (nreads × nchrs − 1)/(nreads + nchrs) (1) 

where nreads is the read depth, and nchrs is the number of pooled 
chromosomes. Neff is calculated in a single nucleotide polymorph-
ism (SNP)-wise manner, and the mean Neff for a given sample is 
used in our filtering. The Neff filter of 28 was determined empiric-
ally by running the PCA analysis at various Neff thresholds. When 
samples with Neff < 28 are included in the analyses these samples 
create outliers in PCA driven by Neff. When PCA is done with sam-
ples Neff > 28, Neff no longer influenced clustering across major 
Principal Components (PCs; results not shown). We randomly 
sampled SNPs in increments of 100, from 100 to 1,000 SNPs, and 
in increments of 1000, from 1,000 to 20,000 SNPs, performed 
PCA, and calculated correlations of PC 1, 2, and 3 with the year 
of collection, frequency of In(2L)t, and Neff. In parallel, we ran an 
identical analysis but with the sample labels permuted. We re-
peated this process 500 times each and compared correlation va-
lues for the real ordering of the data relative to permutations (Figs. 
2; Supplementary Figs. 2 and 3). 

Forward genetic demographic simulations 
To test if overwintering bottlenecks influence patterns of genetic 
differentiation through time, and to infer minimum and max-
imum population sizes during boom-and-bust cycles that are con-
sistent with our data, we performed genetic simulations. First, we 
performed a coalescent-based neutral simulation of a single 
population with θπ = 0.001 using msprime (Baumdicker et al. 2022) 
in Python 3.8. This neutral background was used as a burn-in 
within the forward genetics software, SLiM 3 (Haller and Messer 
2019). SLiM 3 was used to simulate cyclic population crashes while 
varying the population size maximum (NMax) and the population 
size minimum (NMin) under a model of the instantaneous change 
in population size (Supplementary Fig. 4a). For each parameter 
combination, the simulated population had a constant size at 
NMax from generations 1–16, 19–33, and 36–50 and the bottlenecks 
occurred at generations 17–18 and 34–35 where the population 
size was set to NMin (Supplementary Fig. 4b). A Variant Call 
Format (VCF) file of 50 simulated diploid individuals was output 
at the end of each generation to track allele frequency changes. 
AF were simulated to mimic pooled sequencing using poolSeq 
v0.3.5 (Taus et al. 2017) with a mean coverage of 60. Pairwise FST 

was calculated using poolfstat v2.1.1 (Gautier et al. 2022). Every par-
ameter combination was simulated 100 independent times with 
different seeds. Parameter estimation was performed using 
Approximate Bayesian Computation (ABC) using the local linear 
regression method (loclinear) with a tolerance threshold of 5% 
using abc v2.1 (Csilléry et al. 2012) in R. The summary statistics 
used were the medians of within year FST, between year FST, and 
the correlation (R2) of PC1, LD1, and LD2 values relative to the 
simulation year (Supplementary Fig. 4c and d). These later 3 sta-
tistics are, respectively, the principal component (PC) projections 
of dimensions 1 (i.e. PC1), and the first and second linear discrimi-
nants (i.e. LD1–2) of a discriminant analysis of principal compo-
nents (DAPC; Jombart et al. 2010), using the simulated year as a 
grouping prior. For PCA, we used a matrix of AF (columns) and 
samples (rows) in the PCA() function from FactoMineR. The first 
and second PC values from each sample were extracted and 
used in a simple linear regression with simulation year (Years 1– 
3) to calculate correlations (i.e. PC1 ∼ Year, PC2 ∼ Year). We 

repeated this step for both the first and second linear discriminant 
(LD) axes as well. First, a matrix of AF and samples was used in the 
dapc function in adegenet v2.1.10 (Jombart et al. 2010) with simula-
tion year as a grouping prior. After extracting LD1 and LD2 values, 
we ran a linear regression with the LD values and simulation year. 
In this way, we were able to measure how the severity of yearly 
bottlenecks affects both PC and LD space due to shifts in AF across 
samples. A leave-one-out analysis was performed on the input 
summary statistics to understand how each contributes to the es-
timates of NMax and NMin. Our analyses show that the LD1 and LD2 
statistics are most strongly affecting the estimates of NMax and 
NMin from ABC (Supplementary Fig. 4e). 

Identification and inference of In(2L)t markers 
We assessed the frequency of In(2L)t using 2 separate procedures. 
For the pool-seq dataset, we used the method outlined by (Kapun 
et al. 2020, 2021). For the individually sequenced flies, we devel-
oped a predictive framework. We used the DGRP to identify a pa-
nel of SNPs associated with inversion breakpoints for In(2L)t using 
only lines karyotyped as standard or inverted homozygotes 
(Huang et al. 2014). We identified putative inversion markers on 
2L using PCA and by estimating levels of linkage disequilibrium 
(LD) using Plink v1.9 (Purcell et al. 2007). We only kept SNPs with 
the highest loadings to PC1 and mean LD > 0.99 relative to the in-
version karyotype, representing 36,283 SNPs out of 901,524 (4.0%). 
We refined this list by identifying a subset of SNPs that are also in 
strong LD with each other in the Charlottesville data. We kept 47 
SNPs with the highest linkage disequilibrium relative to each 
other (r2 > 0.8) in the Charlottesville data as a list of final inversion 
markers (Supplementary File 1). We trained a linear support vec-
tor machine model (SVM) using the 47 markers and the DGRP data 
using the R package “e1071” v1.7-11 (Meyer et al. 2023), and used 
this SVM to perform in-silico karyotyping of the individually se-
quenced samples (Supplementary Fig. 5). 

Environmental association tests using 
generalized linear models 
To characterize the association between allele frequency change 
and seasonal environmental change, we fit a binomial generalized 
linear model (GLM) using fastglm v0.0.3 (Marschner 2011). We mod-
eled allele frequency change separately in 4 phylogeographic regions 
using the Charlottesville and DEST samples. For each SNP and each 
region, we fit 112 models. In these models, we used Neff (1) as the ob-
served sample size for each population sample and SNP. First, we fit 
a “null model” in which AF were regressed onto their means: 

AF = β0 + ε (2) 

and a second “time model” where AF were regressed onto the collec-
tion year, or year nested inside the collection locale, as an unordered 
factor: 

AF = β0 + β1(yearfactor) + ε (3.1) 

AF = β0 + β1(yearfactor: localityfactor) + ε (3.2) 

This time model was designed to capture changes in AF driven by 
boom-and-bust population dynamics. We used equation 3.1 to mod-
el the Charlottesville data, which came from a single locality, and  
equation 3.2 to model 3 phylogeographic partitions of the DEST 
data (Europe-East, Europe-West (EU-W), North America;  
Supplementary Table 1).  
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Next, we constructed 110 “environmental models”: 

AF = β0 + β1(yearfactor) + β2(γi) + ε (4.1) 

AF = β0 + β1(yearfactor: localityfactor) + β2(γi) + ε (4.2) 

where γi is an environmental covariate. For any model, the en-
vironmental covariate is a summary (mean or variance) of tem-
perature, precipitation, or humidity across 11-time windows 
(see Supplementary Fig. 6). These windows encompass time 
frames ranging from 0–7 days (∼½ the generation time of 
Drosophila), to 0–90 days (∼6 generations). For temperature, we 
also calculated the maximum and minimum temperature 
in the selected window of time and the proportion of days 
where the daily maximum was above 32°C or the minimum 
daily temperature was below 5°C, per the thermal limit model 
of Machado et al. (2021; these variables are indicated in  
Supplementary Fig. 6 as “prop. max” and “prop. min”, respect-
ively). Hourly estimates of environmental variables were 
obtained from the National Aeronautics and Space 
Administration (NASA)-power dataset (Sparks 2018). We per-
formed likelihood ratio tests (LRT) between each environmen-
tal model and the year-only model as well as between the 
year-only model and the null model (Supplementary Data 1). 
For each SNP, we identified the best model using the Akaike 
Information Criterion (AIC). 

Permutations 
We used permutations to develop null expectations for signals of 
environmental association for the GLM analysis. First, we shuffled 
the year (or year: locality) term across samples and performed an 
LRT between the “time model” and the “null model.” This permu-
tation allows us to test if the year-only model or year: locality model 
is observed as the best model more than expected relative to the 
permutations. Next, we shuffled the environmental variable 
across samples but kept the year (or year: locality) term as in the 
real ordering of the data. This permutation allowed us to test if 
any environmental factor was associated with allele frequency 
change more than expected from chance. We performed an LRT 
between the permuted “environmental model” and the real 
“time model.” For each SNP, in each of the 4 population clusters, 
we ran 100 permutations for each model. For each permutation, 
and for each SNP in each cluster, we identified the best model 
by AIC. The specific reordering of an environment for the ith per-
mutation was the same for each SNP, therefore this routine pre-
serves linkage. Because the permutations preserve linkage, they 
are not only useful for generating a null distribution of 
gene-environment association (Fig. 2c and d) but also for sliding 
window tests of signal enrichment and aggregation (Figs. 2e and  
3a). Variation in the test-statistics across the genome reflects dif-
ferences in power due to the variable number of SNPs under con-
sideration and differences in linkage along the chromosome. See  
Supplementary Fig. 6c for more details on the permutation 
scheme. 

Model enrichment 
We tested whether some models were found as the best model 
more often than expected relative to the permuted time and en-
vironmental GLMs. To demonstrate this, we partitioned the gen-
ome into 8 regions: 4 autosomal arms and partitioning inside or 
outside inversions. For the real ordering and the permutations, 
we counted the number of SNPs where each model was found 
as the best model. For the ith model under consideration, in 

each of the 8 regions, we calculated the relative rate (rr) of model 
enrichment, across all n permutations for model i, as: 

rri,n = log2
Nreali

Nperm i,n

 

(5) 

with mean: 

rri =
1
n

100

n=1

log2
Nreali

Nperm i,n

 

(6) 

and standard deviation: 

σrr,i =

�������������������
100

n=1 (rri − rri)
2

n



(7) 

where Nreal i is the number of SNPs for which a given model was 
found to be the best model by AIC in the analysis. Nperm i is the 
number of SNPs for which a permuted model was found to be 
the best model in the nth permutation. We calculated the mean 
(6) standard deviation (7) of rr across all n permutations. If, for 
any given model, the mean-log2 transformed rate of enrichment 
±2 times the standard deviation did not include 0, the model 
was considered significantly enriched (rri ± 2σrr, i > 0) or under- 
enriched (rri ± 2σrr, i < 0) relative to a null distribution generated 
by the GLM permutations. Once the “best model” was found in 
Charlottesville (i.e. the temperature maximum, 0–15 days prior 
to collection; Tmax0–15d; see Results section: In(2L)t shows 
signatures of adaptive tracking…), we sought to identify regions of 
the genome that harbored a localized enrichment of this envir-
onmental association using a signal enrichment test and a 
P-value aggregation test. 

Signal enrichment and P-value aggregation tests 
To test the hypothesis that SNPs with low P-values were evenly 
distributed through the genome, we ranked and normalized 
P-values such that the distribution is transformed into a uniform 
distribution bounded between 1 and 1/L (where L is the number 
of SNPs studied; Lotterhos et al. 2017). By using these rank- 
normalized P-values and dividing the genome into 0.1 Mb windows 
with a 50 Kb step, we identified genomic windows that harbor an 
excess of SNPs with the smallest 5% of the GLM P-values. We calcu-
lated a P-value of “signal enrichment” for each window under the 
null hypothesis that 5% of SNPs in the window will be amongst 
the most significant 5% genome-wide using binomial tests and re-
port the P-value from that test (Figs. 2e and 3a). 

To assess the strength of the GLM signal across the genome, we 
aggregated P-values using the Weighted-Z Analysis (WZA) metric 
(Booker et al. 2023), which is based on Stouffer’s method for com-
bining P-values (Stouffer et al. 1949) (Figs. 2e and 3a). We ran the 
WZA test on the real data as well as the permuted GLM results 
(pink line in Figs. 2d, e and 3a). 

We used the P-values from the signal enrichment and aggre-
gation tests as test-statistics and compared them to an empiric-
al null distribution generated from the permutations. We ran 
the signal enrichment and P-value aggregation tests for per-
muted GLM results of the best environmental model for any 
phylogeographic cluster. For each window, we calculated the 
distribution of test statistics and generated the upper 1.0% as 
a critical value for identifying windows where the real data 
beat permutations.  
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BayPass analysis 
We used BayPass v2.4 (Gautier 2015; Olazcuaga et al. 2022) to iden-
tify loci that are strongly differentiated through time and whose 
AF are strongly correlated with Tmax0–15d. We used poolfstat 
v2.2 (Gautier et al. 2022) to create the input files for BayPass. To 
control for population structure in the data, BayPass uses the Ω re-
latedness matrix. To ensure computational efficiency for our ana-
lyses, the Ω matrix was constructed using genetic data thinned 
such that only 1 randomly selected SNP in every 2,000 bp window 
was retained across chromosomes 2L, 2R, 3L, and 3R. We per-
formed 5 replicate runs of the core model to estimate XtXST and 
took the mean of the XtXST values across independent runs per 
SNP. Under neutrality, XtXST values follow a χ2 distribution with 
degrees of freedom equal to the number of populations sampled 
(Olazcuaga et al. 2022), and we corrected P-values for multiple 
testing using the qvalue package (Storey et al. 2010). We performed 
gene-environment association analysis using the standard covari-
ate model with Tmax0–15d as the covariate. We performed 5 inde-
pendent runs of the standard covariate model and averaged the 
Bayes Factor (BF) terms across replicate runs. To construct null 
distributions of the BF values, we performed simulations of 
pseudo-observed data (POD) using the simulate.baypass() function. 
We performed 10 separate simulations of ∼570,000 SNPs, using 
the observed Ω matrix. Using these simulated values, we show 
that BF values of ∼6 correspond to a False Discovery Rate (FDR) 
of 0.001 and we use this as a critical threshold for assessing signifi-
cant associations with Tmax0–15d. For all analyses, we used de-
fault MCMC options. 

Inferring haplotype trajectories 
We inferred haplotype trajectories associated with loci of inter-
est by combining information from our pooled dataset and our 
individually sequenced dataset. For each window of interest 
(see Model enrichment), we identified a set of “anchor markers.” 
These markers are strongly associated with Tmax0–15d 
(Benjamini-Hochberg FDR q-value < 0.05) in the pooled data. 
Then, using the LD estimates from the individual data, we iden-
tified all loci pairs (±0.2 Mb) with r2 > 0.6 in Virginia to the anchor 
locus. We used the averaged frequency of the anchor loci and its 
high LD pairs, within any given window, as estimators of haplo-
type frequency in the pooled data (see Supplementary Data 3 
and Fig. 3d and e). 

Population genetic analyses for D. melanogaster 
For individually sequenced flies, we calculated FST, π, Tajima’s D, and 
haplotype numbers in vcftools v0.1.16 (Danecek et al. 2011; e.g. Fig. 4b 
and c, Supplementary Figs. 9 and 10). We estimated 2 types of LD me-
trics. First, we estimated SNP-to-SNP (i.e. pairwise) LD using plink v1.9 
(Purcell et al. 2007; Fig. 3c). Second, we calculated inversion-to-SNP le-
vels of LD (see Fig. 3c-inset). This was done using a similar framework 
as pairwise SNP, yet instead of using a second locus in the formula, we 
used the inversion status. Time to the most recent common ancestor 
(TMRCA) was calculated using GEVA v1.0 (Albers and McVean 2020;  
Fig. 4d). For pool-seq data, FST was calculated using poolfstat v2.1.1 
(Gautier et al. 2022). Temporal FST was calculated among populations 
sampled across time points in Charlottesville and selected DEST po-
pulations (Germany, Munich, and Broggingen; Türkiye, Yesiloz; 
Ukraine, Odessa; Finland, Akaa; USA, PA, Linvilla and Wisconsin 
[WI], Cross Plains; Fig. 1f-g). Spatial FST in Europe was calculated on 
samples collected during the fall of 2015 to ensure temporal homo-
geneity across comparisons (Fig. 6c). 

Population genetic analyses for other drosophilids 
Genomic information for other drosophilids was obtained as fol-
lows: D. simulans was obtained as a VCF file from a Zenodo reposi-
tory (Signor et al. 2018). Data for D. yakuba was obtained from 
(Turissini and Matute 2017) and mapped to its corresponding gen-
ome (NCBI acc. GCA_016746365.2). Data for D. sechellia was ob-
tained from (Schrider et al. 2018) and mapped to its 
corresponding genome (NCBI acc. GCF_004382195.1). Data for D. 
mauritiana was obtained from (Garrigan et al. 2014) and mapped 
to its corresponding genome (NCBI acc. GCA_004382145.1). The  
Msp300 gene in other Drosophila species was identified using pair-
wise sequence homology relative to D. melanogaster, using 
Exonerate v2.2.0 (Slater and Birney 2005). 

Cross-model enrichment and directionality scores 
We used Fisher’s Exact Test (FET) to assess whether candidate loci 
that show strong signals of enrichment for environmental associ-
ation in Charlottesville are enriched for those SNPs in the top 5% 
identified in the best environmental association models in other 
regions of the world. We conducted this comparison separately 
for 3 phylogeographic clusters: EU-W, Europe-East (EU-E), and 
North America-East (NoA-E) (Fig. 6a; Supplementary Figs. 11 and 12). 
We also assessed if allele frequency changes are consistent be-
tween population sets by calculating the proportion of SNPs that 
have the same sign of allele frequency change with respect to 
the population cluster’s best-fit model, conditional on SNPs hav-
ing strong allele frequency change (top 5% in both population 
clusters; Fig. 6b). We refer to this statistic as the “directionality” 
statistic following Erickson et al. (2020), Machado et al. (2021), 
and Yu and Bergland (2022). Directionality scores are calculated 
by comparing the sign of the regression coefficients for the 2 mod-
els. For any given SNP, the sign of the beta terms from these mod-
els can be identical (positive-positive, negative-negative), or it can 
be opposite (positive-negative, negative-positive). For any com-
parison, we calculate directionality as the proportion of SNPs 
under consideration that have identical signs. Directionality va-
lues of either 0% or 100% indicate that alleles at a candidate 
window are changing in frequency as a haplotype block in 
Charlottesville relative to another cluster (i.e. 100% means that 
blocks always move in the same direction whereas 0% means 
that they always move in opposite directions). The null expect-
ation is 50%. 

Matched controls analysis 
Matched controls are loci with similar recombination rates 
(±0.20 cm/Mb) and global allele frequency (±0.030) compared to 
candidate SNPs. For every SNP of interest, we aimed to identify 
up to 100 matched controls. To avoid the impact of genetic draft 
as well as linkage disequilibrium to major cosmopolitan inver-
sions, we sampled matched controls from chromosomes different 
from the 1 containing the SNP (Fig. 6c). 

Phenotypic association with inversion status 
To infer the phenotypic consequences of In(2L)t and candidate 
loci associated with the best model in Charlottesville (Tmax0– 
15d), we conducted a Genome-wide association study (GWAS) 
meta-analysis using 225 published phenotypic measurements of 
the DGRP (see Supplementary Tables 8 and 9). We annotated these 
phenotypes by classifying each 1 into 4 general groups: “Behavior”, 
“Life-History”, “Morphology”, and “Stress-resistance”. We used 
this dataset to establish the effect of the cosmopolitan inversions 
In(2L)t, In(2R)Ns, In(3L)P, In(3R)K, In(3R)Payne, In(3R)Mo on  
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phenotype using linear models designating inversion presence fo-
cusing on DGRP strains reported to be homozygous inverted, or 
homozygous standard (Fig. 7a, Supplementary Fig. 13a). In the 
case of 3R, the analysis was implemented to identify traits asso-
ciated with any inversion inside the chromosome. To test for the 
association between inversion status and phenotype, we used a 
linear model and recorded the number of times that each inver-
sion had a significant effect on phenotype with a nominal 
P-value < 0.05. We performed 1,000 permutations by shuffling 
the inversion genotype status of the DGRP lines and repeating 
the analysis. We tested whether the number of significant pheno-
type associations with an inversion in the real data was greater 
than these permutations. 

We performed GWAS for each phenotype using the DGRP2 gen-
omic dataset with GMMAT v1.3.2 (Chen et al. 2019). In this analysis 
our “null model” is described by the formula: 

Phenotypei = β0 + β1(Wolbachia) + GRM (8) 

The null model is compared to a “full model” defined as: 

Phenotypei = β0 + β1(Wolbachia) + β2(SNP dosage) + GRM (9) 

where β1(Wolbachia) is a fixed effect corresponding to the 
Wolbachia infection status, and GRM is a random effect genetic 
relatedness matrix. To generate a GRM, we first performed LD 
pruning using the snpgdsLDpruning() function in SNPRelate version 
3.17 (Zheng et al. 2012) with the slide.max.bp parameter set to 5000. 
Next, we used the snpgdsGRM() function to calculate a GRM based 
on the Genome-wide Complex Trait Analysis (GCTA) method 
(Yang et al. 2011). 

GWAS-GLM enrichment and directionality 
We identified regions of the genome that are enriched for SNPs 
identified as top hits in the GWAS analysis and the Tmax0–15d 
model for Charlottesville (Fig. 7b, Supplementary Fig. 13b). First, 
we partitioned the genome into 8 bins (4 autosomal arms, and par-
titioning inside or outside inversions) and calculated enrichment 
and directionality. We report enrichment as the log2(odds-ratio) 
from a FET tabulating the number of SNPs that are among the 
most significant 5% for each GWAS and the Tmax0–15d environ-
mental GLM model. Next, we calculated the directionality score 
between our GWAS and GLM models. The directionality score 
was calculated by comparing the sign of the regression coeffi-
cients between the Tmax0–15d GLM model (β2(γ); equations 4.1 or 
4.2) and the GWAS model (β2; equations 8 and 9). 

The directionality score was calculated as the proportion of 
times that the sign of these β terms was equal (conditional on 
both GLM and GWAS being significant; ranked P-value < 5%). 
The null expectation is 50%. A directionality score of 100% indi-
cates that the sign of allele frequency change with respect to tem-
perature at every SNP under investigation is the same as the sign 
of allelic effect on trait value. A value of 0% indicates that all SNPs 
have opposing signs of effect in the GLM and GWAS analysis. 
Therefore, values of 100 and 0% are equivalent but reflect differ-
ent predictions of the change in trait value as a function of the en-
vironment. We repeated this analysis with 100 permutations of 
the Tmax0–15d environmental GLM to develop an empirical null 
distribution for the enrichment and directionality tests. 

Next, we sought to identify chromosomal windows that are en-
riched for SNPs ranked as the top 5% most significant (genome- 
wide) for both the GLM and GWAS analysis. We did this by 

conducting a sliding window analysis using a window size of 0.1 
Mb and a step size of 50 kb. For each window, and for each pheno-
type, we tabulated the number of SNPs that are among the most sig-
nificant (i.e. in the top 5%) for the GWAS and the Tmax0–15d 
environmental model and conducted a FET (Fig. 7c,  
Supplementary Fig. 13c). For each window, we counted the number 
of phenotypes with significant enrichment of SNPs that are both 
GWAS and GLM outliers (Bonferroni corrected P-value < 0.05; see 
y-axis in Fig. 7c). We performed this same analysis using the 100 
sets of permuted Tmax0–15d environmental GLMs. For each win-
dow, we tabulated the distribution of the number of phenotypes sig-
nificantly enriched between the GWAS and the permuted Tmax0– 
15d GLM. We identified candidate subregions as those where the 
number of phenotypes that are enriched in the real data exceeds 
the 95% largest value across the GLM permutations for that win-
dow. Because we calculated critical thresholds for each window 
separately, the significance threshold varies across the genome. 

Startle response quantitative complementation 
tests 
To validate the phenotypic effect of candidate regions linked to 
the inversion, we focused on 1 candidate phenotype—startle re-
sponse (Fig. 7e-h, Supplementary Fig. 14). We selected a set of 5 
deficiency lines covering regions of interest (see results and  
Supplementary Table 10). The deficiencies are presumed to be 
on the standard karyotype, and the deficiency stocks also segre-
gate a multiply inverted balancer chromosome on chromosome 
2. We selected DGRP lines that were homozygous for inverted or 
standard karyotypes of In(2L)t. We constructed 25 F1 crosses 
between the deficiency stocks and the DGRP lines (see  
Supplementary Table 10: Crossing Scheme). For example, the 
Df(2L)BSC37, dpp[EP2232]/CyO deficiency (Bloomington #7144), 
which spans 2.1 Mb to 2.5 Mb of 2L and covers the distal break-
point of In(2L)t, was crossed with 3 inverted and 2 standard 
DGRP lines. For each F1 cross, we sorted 3–5 day-old females 
into balancer and deficiency F1 backgrounds based on the curly 
wings phenotype. For these crosses, we assessed startle response 
phenotypes using a Trikinetic monitor (DAM2 Drosophila Activity 
Monitor) assay. Additional details about this assay and analysis 
are in Supplementary Methods 2. 

Results 
An expanding resource for Drosophila population 
genomics 
To study the temporal dynamics of drift and selection, we gener-
ated pool-seq (Schlötterer et al. 2014) and individual resequencing 
data from a dense temporal sampling of D. melanogaster in 
Charlottesville, VA. We combined the Charlottesville data with 
the DEST dataset. This dataset (Supplementary Table 1) is a grow-
ing resource of Drosophila population genomic data from flies col-
lected throughout the year over multiple years in over 100 
localities, across various continents. Using the combined pool-seq 
DEST dataset, we identified 3,866,555 autosomal SNPs that passed 
filtering. For the individual-based sequencing, we identified 
6,689,236 autosomal SNPs that passed filtering. 

Fly populations are structured in both space 
and time 
We used PCA to identify patterns of population structure in our 
samples. We used common SNPs with a minimum allele frequency 
of 1% across populations (432,407 SNPs for the PCA; 2L = 117,076; 
2R = 97002; 3L = 104,582; 3R = 113,747). We focused on localities  
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where flies were sampled at multiple points in time over multiple 
years from Charlottesville and DEST (i.e. Germany, Munich, and 
Broggingen; Türkiye, Yesiloz; Ukraine, Odessa; Finland, Akaa; 

USA, PA, Linvilla and WI, Cross Plains). Consistent with previous 
analyses (Kapun et al. 2020, 2021), PC1 separates samples from 
Europe and North America (Fig. 1a; Latitude: F1,86 = 586.13, 
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Fig. 1. Population structure and signatures of overwintering in temperate flies. a) PCA of temporal samples (PCs 1, 2). The arrow path indicates the 
temporal identity of the samples (arrowheads show the most recent samples, and origins show the oldest sample). Percent variance explained (PVE) is 
shown in parentheses on each axis. b) Same as A, but PCs 2 and 3. c, d, e) Pairwise FST for samples collected at the same localities across 3 years (2014– 
2016) in DEST. Correlation values are shown as an inset. Each point represents a pairwise comparison between 2 samples collected at the exact same 
locality across pairs of years (2014 vs 2015 for A; 2015 vs 2016 for B; 2014 vs 2016 for c). The diagonal line represents the 1-to-1 expectation for a perfect 
correlation. f) Genome-wide average FST across all within the growing season comparisons and overwinter. In this context, the growing season is defined 
as the period occurring between the late spring to late fall seasons and the overwintering period is defined as the time frame between early winter and 
early spring. g) FST values (±1 standard deviation) across multiple years of collection (Δy is the difference in years of the collections).   
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Fig. 2. Drivers of temporal structure in Charlottesville flies. a) PCAs separated by chromosome arm. Each point represents 1 sample, and the color 
indicates the year of collection. The amount of variance explained by each PC is shown at the top of the panel. b) Median correlation between PCs 1–3, 
built using 1,000 randomly sampled SNPs 500 times, and the frequency of In(2L)t as well as the year of collection. Permutations are indicated as “Perm”. c) 
Environmental models for Charlottesville samples. Each point represents a model relating a different environmental variable to AF inside inversions (top 
row) or outside inversions (bottom row). The x-axis shows models ranked according to the best model for SNPs inside In(2L)t (top left facet). The y-axis 
shows the relative rate of enrichment compared to permutations of the environmental Generalized Linear Models (GLMs). Gray circles mean that the 
confidence intervals contain the null hypothesis of 1. Red circles indicate that the model is statistically significant. Blue squares are the year-only model. 
Green triangles are the null model. d) P-value distribution of the Tmax0–15d GLM model (black line), Tmax0–15d GLM permutation (pink lines), across 
chromosomes inside (top) and outside (bottom) inversions. e) P-value of the signal enrichment test across the genome of D. melanogaster (Window Size =  
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P-value = 3.67 × 10−40; Longitude: F1,86 = 605.47, P-value = 1.08 ×  
10−40) whereas PC2 separates the eastern and western phylogeo-
graphic clusters in Europe (Latitude: F1,35 = 0.019, P-value = 0.89; 
Longitude: F1,35 = 8.32, P-value = 0.0066). Samples that were col-
lected at the same locality cluster together, yet these populations 
also show signals of genetic change from 1 year to the next 
(Supplementary Table 2). The overall pattern of year-to-year tem-
poral structure can be visualized as a vector formed among samples 
collected in subsequent years (Fig. 1a and b and Supplementary Fig. 
1). To determine whether this ordination is driven by the influence 
of chromosomal inversions and coding regions, we repeated the 
PCA by excluding all SNPs inside inversions as well as those in 
protein-coding regions. This additional filtering step reduces our 
SNP count from 432,407 to 60,940 (2L = 17,311; 2R = 21,955; 3L =  
11,756; 3R = 9,918). The analysis shows a strong correlation be-
tween the ordination patterns (i.e. sample coordinates in PC 
space) between the filtered and unfiltered PCA (PC1 corr. = −0.998, 
P-value = 5.53 × 10−117; PC2 corr. = 0.962, P-value = 5.539 × 10−51; 
PC3 corr. = 0.924, P-value = 3.97 × 10−38). These results suggest 
that the patterns of spatiotemporal population structure capture 
in the 3 main PCs are robust to inversions and coding-region-SNPs 
across the genome. 

Next, we assessed the stability of spatial structure through 
time. We did this by comparing the relationship between genetic 
differentiation (FST) and spatial distance measured as the haver-
sine distance between 2 localities (dha) for populations sampled, 
at least once, in years 2014, 2015, and 2016 in the DEST dataset 
(European populations only). These years and samples were 

chosen as they have the highest number of comparisons arising 
from the exact same place across those 3 years (273 comparisons; 
samples from Germany, France, Switzerland, Ukraine, and the 
United Kingdom). Under a model where populations are stable 
over time, we expect to see a correlation among pairwise FST 

across years. This is because demes do not go locally extinct 
over the winter and the specific patterns of genetic differentiation 
among localities are preserved from 1 year to the next. Under an 
alternative scenario where populations are locally extirpated, 
we expect uncorrelated patterns of FST from year to year. This is 
because demes that go locally extinct will be recolonized from 
far away refugia that are likely to be different from 1 year to the 
next. Calculating the pairwise correlation of FST among years sug-
gests that spatial structure is temporally stable in D. melanogaster 
(Fig. 1c-e; 2014–2015 corr. = 0.89, P-value = 2.20 × 10−16; 2015–2016 
corr. = 0.92, P-value = 2.20 × 10−16; 2014–2016 corr. = 0.96, P-value  
= 2.20 × 10−16). 

Temporal structure is driven by seasonal 
boom-bust demography 
To test the hypothesis that seasonal fluctuations in population 
size influence the genetic composition of populations, we com-
pared patterns of FST between samples collected within a growing 
season relative to FST between samples separated by winter. We 
conducted this analysis on localities where flies were sampled at 
multiple points in time over multiple years, i.e. those used in the 
PCA of Fig. 1a and b. The amount of genetic differentiation ac-
crued within the growing season is smaller than that accrued 
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overwinter (Fig. 1f; Supplementary Table 3; median within-year 
FST = 0.0031, median overwinter FST = 0.0045). Genetic differenti-
ation within localities through time is observed across multiple 
years and the rate of increase of genetic differentiation varies 

among populations (Fig. 1g; Analysis of Covariance [ANCOVA], 
year effect: F1,720 = 5.40, P-value = 0.02; year × pop effect: F7,720 =  
16.71, P = 2.10 × 10−16). The signal of year-to-year allele frequency 
change is distributed across the genome, consistent with a 
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demographic explanation. To show this, we repeated the PCA 
using random subsamples of SNPs across autosomes. We then 
ran correlation analyses of PC projections relative to the year of 
collection. Our results show that the correlation of PCs 1–3 with 
year is robust in sample sets larger than 1,000 loci demonstrating 

that the demographic signal is spread throughout the genome 
(Supplementary Figs. 2 and 3; Supplementary Table 4). 

To quantify the general strength of a winter bottleneck, we con-
ducted forward genetic simulations designed to emulate the 
boom-bust cycle and sampling scheme for the Charlottesville 
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samples (see Supplementary Fig. 4). We simulated 50 generations 
(∼3 years) of a population with similar genetic properties as D. 
melanogaster. We subjected these populations to yearly cycles of 
population size change of variable magnitude (booms-and-busts), 
as well as a null model of constant population size. We calculated 
a variety of summary statistics (see Materials and Methods;  
Supplementary Fig. 4) and used ABC to determine the set of para-
meters that most closely fit the real data. Our results provide sup-
port for the hypothesis of yearly population expansions and 
contractions and suggest that the magnitude of winter collapse, 
in Charlottesville, is on the order of 98% of the maximum summer 
size (median NMin = 283 [97.5% CI: 260; 406], median NMax = 27,584 
[13,217; 46,746], median Ne [effective population size, i.e. the har-
monic mean of N ] = 2,234 [1,926; 3,240]). 

In(2L)t shows signatures of adaptive tracking and 
footprints of natural selection 
While projections at PCs 1 and 2 of most chromosome arms are 
primarily explained by year of collection (Fig. 2a), projections at 
2L appear to be driven by the frequencies of the cosmopolitan in-
version In(2L)t (Figs. 2b, Supplementary Data S2 and S3; also  
Supplementary Fig. 5 and Table 4). This observation suggests 
that natural selection may be acting on the 10Mb inversion. 

To identify signatures of adaptive tracking, we modeled allele 
frequency change through time in Charlottesville using a GLM. 
We modeled allele frequency at each SNP in the genome as a 

function of the year of collection and an aspect of the environ-
ment prior to collection. We tested 100 environmental variables 
that summarize temperature, precipitation, and humidity in the 
weeks prior to sampling (Supplementary Fig. 6). For each SNP, 
we assessed which of these environmental models is the best 
model more often than expected from the permutation of the en-
vironmental labels. For SNPs inside In(2L)t, 2 models emerge as 
the best-fit models: the maximum temperature 7–15 days prior 
to collection and the maximum temperature 0–15 days prior to 
collection. These models are, respectively, 5.2 and 5.1 times 
more likely to be observed as the best model in the real data relative 
to the permutations of the environmental GLM models (Fig. 2c). The 
SNP-wise P-values of these models are highly correlated (corr = 0.8, 
P-value = 2.10 × 10−16). Given that they are strongly correlated and 
proxies for each other, we decided to focus downstream analyses 
on the maximum temperature 0–15d model as this model encom-
passes a broader time window and represents a full generation in 
flies (see info for all models in Supplementary Data 1, and 2). For 
simplicity, we refer to this model as “Tmax0–15d.” 

We summarized the output of the Tmax0–15d model using slid-
ing window approaches that test if SNPs whose frequency is 
strongly correlated with Tmax0–15d are randomly distributed 
throughout the genome. We calculated 2 summary statistics on 
our pooled data. First, we tested whether windows across the gen-
ome are enriched for the smallest 5% of the GLM P-values (signal 
enrichment test, Fig. 2c). Second, we implemented the WZA 

0

5

10

15

20

P
he

no
ty

pe
s 

(N
)

D
ire

ct
io

na
lit

y

Enrichment

Behavior (B)

Life history (L)

Morphology (M)

Stress 
Resistance (R)

(a) (b)

Position 2L (Mb)

P
C

 1
 P

ro
je

ct
io

n
Inverted Standard

P
C

 2
 P

ro
je

ct
io

n

(d) (e)

−0.9

−0.6

−0.3

Balancer Deficiency

2.0

3.0

4.0

Inverted karyotypes
Standard karyotypes

S
R

 D
ec

ay
S

R
 L

en
gt

h

(f)

(g)

Balancer Deficiency

Df(2L)BSC37

Df(2L)BSC37

Df(2L)BSC37

B M L R

(h)

0.25

0.50

0.75

1.000.50 1.50

Startle 
Response

0

5

10

0 5 10 15 20

NS
SIn(2L)t

w4.7
w5.2

w6.1 w9.6
w6.8

w3.1

Msp300

P
he

no
. (

N
)

(c)

-0.4

0.0

0.4

-0.6 -0.3 0.0 0.3 0.6

ClimbingHeight (2)
Lifespan (4)

Chemical Response (10)
Sleep (2)

Glycerol Levels (3)
Larvae Survival (2)

Activity Level (1)
Temp. Acclimation (1)
Anoxia Tolerance (1)
Body Size (6)
Sleep (2)
Starvation Resistance (1)
Chemical Resistance (1)

Anoxia Tolerance (1)
Bacterial Load (1)

Stress resistance (2)
Chemical Response (1)

Pesticide 
Resistance (9)NegativeGeotaxis  (3)

StartleResponse (4)

In
ve

rs
io

n
S

ta
nd

ar
d

PC 1 Loadings (11.10%)

P
C

 2
 L

oa
di

ng
s 

(9
.1

7%
)

-3

-2

-1

0

-3

-2

-1

0

Inside In(2L)t

N.S.

P = 0.001

Fig. 7. Phenotypes associated with candidate loci on chromosome arm 2l. a) The number of GWAS phenotypes associated with inversion status, In(2L)t, in 
the DGRP. Traits are divided into 4 phenotypic categories. The real data are shown as diamonds, GWAS permutations are shown as black points and 
boxplots. b) Directionality and enrichment analysis between the DGRP-GWAS and the best environmental model in Charlottesville along for In(2L)t 2L. 
Black dashed lines indicate null expectations estimated as the 5 and 95% percentiles calculated using the Tmax0–15d GLM permutations. Each point is a 
phenotype and colored as in a. c) Window level enrichment analysis across 2L. The y-axis shows the number of phenotypic measurements associated 
with SNPs that are both outliers in the GWAS and the GLM analysis. Windows that exceed 100 permutations of the Tmax0–15d GLM are shown in 
turquoise, otherwise in purple. Vertical lines show the boundaries of In(2L)t. d) PCA constructed using phenotypic values of traits that show enrichment 
of GWAS and GLM SNPs in the sliding window analysis. Each arrow represents a phenotype characterized in a GWAS study. The number of studies 
measuring the same phenotype is shown in parentheses. e) Inversion status is significantly associated with the phenotype PC1. f) Inversion status is not 
associated with PC2. For e and f, the 95% confidence intervals are shown. g) Quantitative complementation tests using deficiencies show that the inverted 
and standard karyotypes have significantly different effects in the deficiency background but not the balancer background for the decay rate of startle 
response. h) Same as g but for the startle response length.   

12 | J. C. B. Nunez et al. 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/advance-article/doi/10.1093/genetics/iyad207/7459204 by The U

niversity of Verm
ont Libraries user on 03 January 2024

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data


P-value aggregation test (aggregation test, Fig. 3a). In both cases, 
we assessed statistical significance by comparing sliding window 
results from the real data to the sliding window analysis of the 
100 random permutations of the Tmax0–15d variable (Fig. 2d). 
We show that there is an enrichment of SNPs whose AF are corre-
lated to Tmax0–15d within and around In(2L)t but not for other re-
gions of the genome (Fig. 2e). By comparing the results of these 
tests with the Tmax0–15d environmental GLM permutations, we 
highlight 6 candidate loci within In(2L)t centered at 3.1, 4.7, 5.2, 
6.1, 6.8, and 9.6 Mbs that outperform permutations and are en-
riched for SNPs whose frequency is strongly correlated with re-
cent maximum temperature (Fig. 3a). We used these peaks to 
define windows (“w”; e.g. w3.1, w4.7, etc.) of interest that spans 
+/− 0.2Mb to the left and right of the maximum peak of the signal. 

To test whether SNPs associated with Tmax0–15d are more dif-
ferentiated than expected based on short-term demographic fluc-
tuations, we compared our GLM result for the Tmax0–15d GLM 
model to the output of BayPass (Gautier 2015; Olazcuaga et al. 
2022). First, we asked whether the standardized measure of genet-
ic differentiation that corrects for population structure, XtXST, is 
elevated on chromosome 2L, and inside the inversion relative to 
the rest of the genome. We find that the In(2L)t region has the 
highest density of XtXST outliers (q < 0.05) across the genome: 
23.7% of XtXST outliers are within In(2L)t, a locus that occupies 
roughly 10% of the genome, whereas XtXST outliers are less abun-
dant in other regions of the genome (Supplementary Fig. 7a). We 
also assessed whether the top 5% Tmax0–15d GLM sites are 
enriched for XtXST outliers, compared to the top 5% of SNPs 
from the GLM permutations. We find that top GLM outliers are 
only enriched for XtXST outliers on chromosome 2L (Fig. 3b,  
Supplementary Fig. 7b), and that this enrichment beats 95% of en-
richment statistics calculated from the permuted GLM. This re-
sult shows that GLM SNPs are more differentiated through time 
than expected after accounting for population demography. 
Next, we used the Tmax0–15d environmental values to conduct a 
gene-environment association analysis using the standard covari-
ate model in BayPass. We generated a simulated neutral distribu-
tion of the environmental association using the POD method. The 
upper 99.9% value of the BF value (on a decibel scale) from the si-
mulations is 6, and we use this value as a threshold for consider-
ing a site as significantly associated with Tmax0–15d using the 
BayPass analysis. We find that 57.8% BF outliers are found inside 
In(2L)t, and that this genomic region contains the highest density 
of BF outliers across the genome (Supplementary Fig. 7c). Notably, 
100% of BF outliers are in the top 5% of Tmax0–15d GLM, far ex-
ceeding enrichment values calculated from GLM permutations 
(Supplementary Fig. 7b). 

The localized enrichment of outlier loci suggests a complex 
haplotype structure at In(2L)t. To examine this haplotype struc-
ture, we calculated pairwise LD among SNPs using individually se-
quenced and phased fly genome data. We estimated the mean 
linkage (measured as r2) among all pairwise SNPs in 2L using a 
sliding window approach (size = 50 Kbp, step = 10 Kbp). SNPs with-
in the windows of interest show high LD across long distances 
(Fig. 3c). The highest mean pairwise r2 observed occurs among 
the windows that contain both left and right In(2L)t breakpoints 
(mean r2 = 0.075). The mean r2 observed between the breakpoints 
and the windows of interest is 0.057 and the mean r2 observed 
among the windows themselves is 0.050. For comparison, the 
mean r2 for other SNPs is 0.022 and 0.013 for loci inside and outside 
the inversion, respectively. To further explore this signal, we also 
estimated r2 between individual SNPs and inverted/standard kar-
yotype as inferred by the SVM model (see Supplementary Fig. 5). 

Windows of interest have elevated mean LD to the inversion 
(Fig. 3c-inset; e.g. mean r2 of w5.2 = 0.11, w6.1 = 0.09, w9.6 = 0.07; 
mean outside of windows = 0.04) even compared with regions 
immediately adjacent to the inversion breakpoints (Left = 0.09, 
Right = 0.08). We also estimated the number of SNPs across 2L 
with “perfect” and “high” levels of LD to the inversion. In this con-
text, perfect LD is r2 > 0.99 and high LD is r2 > 0.70. Other than the 
breakpoints, few regions have SNPs in perfect LD to the inversion 
(Supplementary Fig. 8a). Of the windows of interest, only w5.2 har-
bors just 1 SNP with perfect LD (2L:5,155,959; an intronic variant at 
the Msp300 gene). When assessing SNPs in high LD, we observe 
that the windows of interest, particularly w5.2, w6.1, and w9.6, 
harbor large numbers of SNPs with r2 > 0.70 (Supplementary 
Fig. 8b; 119, 357, and 109, respectively). For reference, the mean 
number of high LD SNPs in comparably sized windows is 24. 
These findings showcase that while there is high LD among the 
windows of interest and the inversion breakpoints, In(2L)t is not 
behaving like a fully linked, 12 Mb locus. 

We leverage these regions of high LD to characterize the sea-
sonal change in haplotype frequency. We identified sets of “an-
chor loci” based on LD and GLM scores (Supplementary Data 3) 
to represent the major haplotypes at each of our regions of inter-
est, including loci with low GLM P-values and high LD with inver-
sion breakpoints. Using these data, we show that the standard 
karyotype has its lowest frequency in midsummer and highest 
frequency in the spring and late fall (Fig. 3d). Regressing the aver-
age allele frequency at the anchor SNPs against Tmax0–15d shows 
a significant negative relationship between In(2L)t haplotype fre-
quency and maximum temperature across 2016–2018 (Fig. 3e). 
These analyses also show that the inverted haplotype is at a high-
er frequency in spring and late winter compared to summer and 
fall. 

Footprints of selection at outlier windows 
Taken together, the patterns of LD, temporal FST, and association 
with Tmax0–15d, suggest that the outlier windows identified here re-
present candidate loci under seasonal selection. To further evalu-
ate these signals of selection, we calculated a variety of 
population genetic statistics at each window to assess the types 
of evolutionary processes that may be at play. First, we used the 
individual-based sequencing data to visualize these patterns of 
haplotype diversity within each window of interest. For this ana-
lysis, we combined our individual Charlottesville data with genome 
sequence data from inbred lines or haploid embryos established 
from worldwide collections (Supplementary Tables 6 and 7) and 
show reduced genetic diversity (π), Tajima’s D, and haplotype diver-
sity at w6.1 and w9.6 (Fig. 4a and b, Supplementary Figs. 9a-e, 10a 
and b, and Table 6) consistent with partial selective sweeps 
(Simonsen et al. 1995). Of these, w9.6 is interesting because it colo-
calizes with a soft sweep identified by Garud et al. (2015) in a North 
American population. We estimated levels of FST between standard 
and inverted karyotypes using our individual sequencing data of 
flies from Charlottesville. We observe high levels of differentiation 
around the breakpoints, a pattern that is expected of inversions 
(Kapun and Flatt 2019). We also observe 2 regions within the inver-
sion that show elevated differentiation (FST > 0.4). One of these re-
gions corresponds to w5.2, a window that primarily encodes the  
Msp300 gene (Fig. 4c). Elevated FST at this region is also observed 
in the DGRP, but not in Africa (Supplementary Fig. 10c). The second 
region of elevated differentiation occurs in w6.1-w6.8. This pattern 
is only seen in Virginia but not in the DGRP. Lastly, we estimated al-
lele ages of SNPs in the inversion as well as within each inversion 
haplotype (standard and inverted). Consistent with previous  

Seasonal Inversion in Drosophila | 13 
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/advance-article/doi/10.1093/genetics/iyad207/7459204 by The U
niversity of Verm

ont Libraries user on 03 January 2024

http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
https://identifiers.org/bioentitylink/FB:FBgn0261836?doi=10.1093/genetics/iyad207
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data
https://identifiers.org/bioentitylink/FB:FBgn0261836?doi=10.1093/genetics/iyad207
http://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyad207#supplementary-data


literature estimates, our allele age estimates showcase that In(2L)t 
is a relatively young inversion that arose ∼85,000 y. ago (Fig. 4d; me-
dian TMRCA; current estimates = 75,000–160,000 y; Andolfatto et al. 
1999; Corbett-Detig and Hartl 2012) and that the mean age of loci in-
side windows of interest predates this estimate (Supplementary 
Fig. 8e). We also note that w6.8 harbors young alleles within the in-
verted karyotype, a signature that is consistent with an intrakaryo-
type incomplete sweep. 

A trans-species SNP in Msp300 is highly 
differentiated in In(2L)t 
Within w5.2, 1 seasonal SNP in the Msp300 gene is a trans-specific 
polymorphism (Fig. 5a; 2L:5192177; c.32735G > T) observed in re-
lated Drosophila species such as D. simulans and D. sechellia, but 
not D. mauritiana nor D. yakuba (Fig. 5d). This mutation causes a 
nonsynonymous change (p.Gly10912Val) in the protein (Fig. 5b). 
The locus is in strong linkage with In(2L)t in Virginia (LD of 
2L:5192177 to the inversion is r2 = 0.68). AF at this locus are strong-
ly correlated with the Tmax0–15d model (P-value = 6.05 × 10−5;  
Fig. 5c). To understand how linkage patterns vary across space, 
we compared the levels of association of each allele of 
2L:5192177 (i.e. G and T) with inverted and standard karyotypes 
in African and European populations. In Europe and North 
America, G is more abundant on standard backgrounds whereas 
T is more abundant on inverted backgrounds (FET, odds ratio =  
0.013 [95% Confidence Interval (C.I.) = 0.002–0.053]; P-value =  
2.16 × 10−13). In an ancestral African population, the T allele is 
more abundant relative to G (Fig. 5e; odds ratio = 18.43 [95% C.I. =  
4.51–162.6]; P-value = 3.288 × 10−8) and, unlike temperate popu-
lations, both alleles are abundant in the standard karyotype 
(Fig. 5f). 

Signals of adaptive tracking within In(2L)t are 
generalizable to other populations 
We tested if the associations between environmental variables and 
In(2L)t observed in Charlottesville are generalizable to other local-
ities. We used linear modeling to determine the most likely environ-
mental correlates of allele frequency change using temporal 
samples from localities in 3 distinct phylogeographic regions: 
Europe West, Europe East, and the East Coast of North America. 
The best-fit models for these regions are distinct from those of 
Charlottesville (see Supplementary Fig. 11): the variance of humid-
ity in the 0–30 days prior to sampling for EU-E (Hvar0–30d; 22.3 times 
higher than Hvar0–30d GLM permutations), average humidity 0–60 
days prior for EU-W (Have0–60d; 38.2 times higher than Have0–60d 
GLM permutations), and variance of temperature 30–60 days prior 
for NoA-E (Tave30–60d; 2.28 times higher than Tave30–60d GLM 
permutations). Although the best-fit environmental models identi-
fied in these other regions differ from what we identified in 
Charlottesville, the loci underlying allele frequency change in these 
regions could be the same. Indeed, the strongest signals of environ-
mental enrichment that we observe in these other phylogeographic 
clusters are on 2L, and for loci inside In(2L)t (Supplementary Fig. 12). 
To test if the same loci change in frequency among these regions, 
and to test if the direction of allele frequency change is consistent 
among these regions, we conducted enrichment and directionality 
tests. Candidate loci at w3.1, w5.2, w9.6 and the inversion break-
points are enriched for SNPs strongly correlated with the weather 
in both Charlottesville and either EU-E or EU-W, but not NoA-E 
(FET, P-value < 0.05; Fig. 6a). We observe a lack of enrichment at 
w6.1 and w6.8 when contrasting Charlottesville to EU-W and 
EU-E, suggesting that the areas of reduced variation in this region 
may be private to North American populations. The directionality 

test shows that nearly all top SNPs that are changing in frequency 
in Charlottesville also change in frequency in the same direction 
in EU-E (directionality scores > 90%). The changes are also observed 
in EU-W, but the direction is anticorrelated (Fig. 6b). This anticorre-
lation may be driven by the fact that the best model in EU-W is dri-
ven by weather occurring 3 months in the past and thus alleles are 
correlated to changes in entirely different seasons. Notably, no sig-
nificant directionality relationships are observed in NoA-E. Finally, 
to assess if In(2L)t or candidate loci are spatially differentiated, we 
calculated FST between locales as a function of their phylogeo-
graphic cluster relative to matched controls. Pairwise FST shows 
no difference among In(2L)t outliers and control loci across space 
(Kruskal-Wallis tests, P-value EU-E = 0.47, P-value EU-E = 0.46; Fig. 6c). 

In(2L)t SNPs are associated with ecologically 
important traits 
To elucidate the phenotypic consequences of the candidate loci 
we identified, we aggregated line mean estimates of the DGRP 
for 225 phenotypic measurements collected by dozens of labs 
(Supplementary Tables 8 and 9). The phenotypic variation of 36 
traits is correlated with In(2L)t inversion status, and these traits 
span all phenotypic classifications (Fig. 7a). However, this signal 
of association is not observed in other chromosomes or other in-
verted regions (Supplementary Fig. 13a). 

We performed GWAS for each of the 225 phenotypic measure-
ments and assessed the level of enrichment between loci that are 
associated with each measurement and loci that are strongly as-
sociated with the Tmax0–15d model in Charlottesville. We show 
that only In(2L)t is enriched for loci that are both associated 
with phenotypic variation in the DGRP and also correlated with 
Tmax0–15d in Charlottesville (Fig. 7b and Supplementary Fig. 
13b). We also investigated the proportion of SNPs that have the 
same sign of allele frequency change conditional on those SNPs 
being in the top 5% of both the GWAS and the GLM models (i.e. 
“directionality”; Fig. 7b). For each SNP under investigation, we 
used the estimated allelic effect from the GWAS and the slope of 
allele frequency change with respect to the Tmax0–15d model. 
Like our previous directionality analysis, our null hypothesis is 
50%. Values different from 50% show evidence of consistent align-
ment of effect directions between the GWAS and GLM analyses. 
SNPs on 2L that are associated with phenotypes and Tmax0–15d 
show levels of directionality greater than we expect compared to 
the Tmax0–15d GLM permutations (Fig. 7b and Supplementary 
Fig. 13b). 

We performed a sliding window analysis across 2L to identify 
subregions that are especially enriched for SNPs that are top 
hits for both GWAS of each phenotypic measurement and the 
Tmax0–15d GLM relative to the Tmax0–15d GLM permutations 
(Fig. 7c). For any window, and for any phenotypic measurement, 
we calculated the odds ratio that SNPs inside the window are in 
the top 5% for GWAS and GLM, ranked genome-wide. We identi-
fied windows with significant enrichment after correcting for 
multiple testing and tabulated the number of phenotypic mea-
surements with significant enrichment for each window. We 
find that regions inside the inversion are significantly enriched 
for GWAS and GLM outliers for 57 phenotypic measurements. 

The inverted and standard alleles impact a suite of traits, dem-
onstrating pleiotropy and suggesting covariance. To characterize 
patterns of trait covariation, we conducted PCA using the 57 
phenotypic measurements identified in our sliding window ana-
lysis (Fig. 7d). Presence of the inversion is significantly associated 
with PC2 (t-test, t = 3.6365, df = 19.76, P-value = 0.001; Fig. 7f), but 
not PC1 (t = 1.4792, df = 37.862, P-value = 0.14; Fig. 7e) or PC3  
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(t = −0.14899, df = 20.776, P-value = 0.883). Based on these ana-
lyses, we identify groups of phenotypes associated with inversion 
homozygotes such as higher levels of basal and induced activity, 
lifespan, and resistance to various stressors including pesticides. 
On the other hand, the phenotypes associated with the standard 
homozygotes are characterized by higher values for sleep, starva-
tion resistance, and chemical resistance. 

To validate the phenotypic effect of allelic variation at the can-
didate regions, we focused on startle response. The startle re-
sponse trait significantly varies as a function of inversion 
presence (Fig. 7a), is a top hit in our GLM-GWAS enrichment ana-
lyses (Fig. 7b), and inverted homozygotes have a greater startle re-
sponse than standard homozygotes. We used quantitative 
complementation to validate the effect of candidate windows on 
startle response. We crossed selected DGRP lines to 5 deficiency- 
bearing lines for regions in In(2L)t (Supplementary Table 10 and 
Fig. 14). One deficiency that covers the left-inversion breakpoint 
(2.17–2.45 Mb; Fig. 7c, top) fails to complement the inverted 
and standard alleles for 2 measures of startle response: the rate 
of return to basal activity (Fig. 7g; χ2

SR decay[df = 3] = 24.20, 
P-value = 2.26 × 10−5) and the startle-response length (Fig. 7h; 
χ2SR length[df = 1] = 3.504, P-value = 0.061; Supplementary Table 11). 
Complementation tests confirm that the inversion increases startle 
response, consistent with the direction of effect among inbred 
DGRP lines. 

Discussion 
In this paper, we used genomic data to study the dynamics of al-
lele frequency change across the growing season in D. melanoga-
ster with special emphasis on patterns of genetic change in the 
cosmopolitan inversion In(2L)t. We show that the frequency of 
In(2L)t fluctuates seasonally, likely as a result of weather in the 
weeks prior to collection. We identified groups of phenotypes as-
sociated with the inverted and standard forms of 2L and validated 
phenotypic association using deficiency mapping. This work ad-
vances our understanding of natural selection in the wild because 
it highlights the temporal dynamics of allele frequency change in 
natural systems and provides functional insights into our under-
standing of adaptive tracking. 

How does seasonal demography influence 
fluctuating selection? 
Our demographic analyses revealed 2 insights into the temporal 
dynamics of allele frequency change in D. melanogaster. First, we 
show that spatial population structure is stable over time 
(Fig. 1a-e) suggesting that populations overwinter locally and are 
not recolonized from distant refugia yearly. Second, we show 
that local population size contracts during overwintering bottle-
necks. We observe that genetic differentiation overwinter is larger 
than over the growing season for several temperate populations 
(Fig. 1f). Some populations have much larger levels of overwinter-
ing FST than others, a result that may be driven by different 
strengths of winter bottleneck at these localities (Fig. 1f). Using 
forward genetic simulations, we show that the short-term effect-
ive population size (NE) of 1 deme (Charlottesville) is between 
∼2,000 and 3,000 (Supplementary Fig. 4), consistent with another 
recent estimate of ∼10,000 (Lange et al. 2022). The estimates of lo-
cal deme size are much smaller than the estimated global census 
size of 108–1020 (Karasov et al. 2010; Buffalo 2021), and the long- 
term NE size of 106 (Kapopoulou et al. 2020). Since the efficacy of 
selection is proportional to 1/NE, understanding NE differences 
across local, global, and historical contexts is important to 

contextualize the roles of selection in the wild. While the large 
census sizes of D. melanogaster ensure that it is not mutation- 
limited (Karasov et al. 2010), ultimately selection acts on indivi-
duals living and reproducing within finite populations where local 
demographics have an oversized role (Wright 1931). 

Is In(2L)t an adaptive inversion? 
The In(2L)t locus has long been hypothesized to be an adaptive in-
version in D. melanogaster (Lemeunier and Aulard 1992; reviewed 
in Kapun and Flatt 2019). Previous work has demonstrated select-
ive sweeps near the proximal (right) breakpoint of In(2L)t 
(Andolfatto et al. 1999; Andolfatto and Kreitman 2000), and some 
evidence suggests epistatic selection between the proximal break-
point and the neighboring Adh locus that sits just outside of the in-
version region (van Delden and Kamping 1991). Yet, despite these 
studies, the drivers of selection on this inversion are poorly under-
stood. For example, while inversions in Drosophila tend to be more 
common in lower latitudes and thus have been argued to be 
adapted to warmer environments (Stalker 1980), these predictions 
do not hold for In(2L)t. A meta-analysis of the inversion’s world-
wide frequency does not show clear and consistent correlations 
with latitude although it is found at intermediate frequencies in 
populations around the world (Kapun and Flatt 2019). 

On the specific topic of seasonality, the evidence has been 
mixed. Early analyses of D. melanogaster inversions found little 
evidence for seasonal oscillations at In(2L)t (Stalker 1980). Later 
studies investigating the associations between In(2L)t and tem-
perature variables showed positive correlations between tem-
perature and inversion frequencies (van Delden and Kamping 
1989; Kamping and Delden 1999). In these cases, the authors ob-
served that flies with In(2L)t showed slower development time 
at lower temperatures. Likewise, van Delden and Kamping 
(1997) and van’t Land (1997) observed associations between the in-
version and resistance to high temperature and posited that the 
inversion likely plays a role in the genetic cline of the classic  
Adh allozyme polymorphism. Despite these findings, follow-up 
studies surveying natural fly populations showed that the In(2L)t in-
version increases in frequency in cold weather (Sanchez-Refusta 
et al. 1990). Recent genomic work on samples collected across 
Europe shows that genetic differentiation surrounding the In(2L)t 
locus is high in the fall, and low in the spring, suggesting temporally 
heterogeneous selection (Bogaerts-Márquez et al. 2020). Taken to-
gether, these results suggest that In(2L)t likely contributes to adap-
tation to fluctuating environments, and also highlight the gaps in 
our knowledge about the functional and evolutionary conse-
quences of this cosmopolitan inversion polymorphism. 

In recent years, theoretical and empirical work has provided a 
blueprint to characterize adaptive inversions in nature. 
Collectively, this work predicts that inversions may capture new 
variants that drive local adaptation, harbor disproportionate 
amounts of heritability for ecologically important traits, and con-
tain loci that are pleiotropic (Thompson and Jiggins 2014;  
Charlesworth 2016; Küpper et al. 2016; Hager et al. 2022; Schaal 
et al. 2022). Empirical work has shown that many loci classified 
as adaptive inversions are often genome outliers when comparing 
among ecotypes (Kirubakaran et al. 2016), show clear correlations 
to ecological stressors (Wellenreuther and Bernatchez 2018), and 
contain alleles in strong but imperfect linkage disequilibrium 
with each other and the inversion breakpoints (Schwander et al. 
2014). 

We show that In(2L)t harbors many of these characteristics of 
an adaptive inversion. For instance, allele frequency fluctuations 
at In(2L)t in an orchard population are correlated with ecological  
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factors related to weather in Virginia (Figs. 2c-e and 3d-e), and 
these loci are also enriched for SNPs that fluctuate in response 
to weather in European populations (Fig. 6a). In general, we ob-
serve strong long-distance LD between candidate loci inside 
In(2L)t (Fig. 3c), consistent with theoretical models that distin-
guish adaptive and neutral inversions (Kapun and Flatt 2019). 
We observe that while there is elevated linkage inside the inver-
sion relative to the rest of 2L, loci inside the inversion show 
varying levels of association with the breakpoints (Fig. 3c,  
Supplementary Fig. 8a and b). This finding reveals that In(2L)t is 
not behaving like a single, fully linked, 12 Mb locus. Yet, we also 
observe that the windows of interest show localized elevation in 
their levels of linkage to the breakpoints (Fig. 3c-inset) and that 
patterns of linkage vary among populations (Fig. 5e). 

Based on these observations we hypothesize that while the in-
version, per se, may not have evolved as an explicitly adaptive lo-
cus, the lack of recombination may have helped the formation of a 
coadapted gene complex that facilitates seasonal adaptation. This 
hypothesis is consistent with previous work. First, Corbett-Detig 
and Hartl (2012) observed that In(2L)t’s distal breakpoint trun-
cates the 3′ UTR of 1 gene (CG15387), but otherwise, the break-
points of this inversion do not appear to create null alleles of 
any kind. Second, the expression of many genes across the gen-
ome is associated with In(2L)t, but the effect size of the inversion 
on gene expression is modest and not biased toward genes near 
the breakpoint (Lavington and Kern 2017). And third, the gener-
ation of a transgenic version of In(2L)t did not cause strong differ-
ences in gene expression of neighboring genes (Said et al. 2018). 
These findings, in combination with our evidence, suggest that 
the adaptive value of In(2L)t may result from a coadapted gene 
complex that is shielded from recombination by the inversion. 

Does In(2L)t show footprints of adaptive tracking? 
The topic of adaptive tracking, particularly in Drosophila, has gar-
nered attention and controversy in the literature. While multiple 
papers have shown that adaptive tracking is a general and quan-
tifiable phenomenon in various Drosophila species (Dobzhansky 
1943; Dobzhansky 1947; Dobzhansky and Ayala 1973;  
Boulétreau-Merle et al. 1987; Rodríguez-Trelles et al. 1996;  
Rezende et al. 2010; Bergland et al. 2014; Machado et al. 2021;  
Olazcuaga et al. 2022; Rudman et al. 2022), alternative hypotheses 
have been presented. These alternatives include the role of popu-
lation substructure (Charlesworth and Giesel 1972; Lynch and Ho 
2020), microspatial heterogeneity (Barker et al. 1986), sampling 
bias (Buffalo and Coop 2019), or mass migration (Buffalo and 
Coop 2019, 2020) in determining temporal patterns of genetic vari-
ation. For instance, in a recent study, Buffalo and Coop (2020) sug-
gest that signals of temporal allele frequency change reported by  
Bergland et al. (2014) could be driven by nonseasonal temporal 
structure. They arrived at their conclusion in part because the 
patterns of autocovariance of allele frequency change through 
time did not match their expectation, even though the autocovar-
iance terms they calculated were significantly different from zero. 
However, the autocovariance analysis of Buffalo and Coop (2019,  
2020), used to identify linked selection, has notable caveats in 
its application to temporal allele frequency data of natural popu-
lations. For example, the method assumes that the demes under 
study are of constant population size and isolated. While these as-
sumptions may be reasonable for their model, and applicable to 
laboratory selection experiments, they are unreasonable for 
many wild systems including flies in orchards. Our data provides 
evidence that population sizes in the orchard change between 
summer and winter (Fig. 1f, Supplementary Fig. 4), and 

observations from field collections suggest that census size 
changes throughout the growing season too (Atkinson and 
Shorrocks 1977; Gleason et al. 2019). While we find no evidence 
of wholesale population turnover of D. melanogaster in the popula-
tions we study throughout the world (Fig. 1a and b), it is certain 
that migration is happening to some degree among local demes 
and that fly populations in orchards are not “closed.” Finally,  
Buffalo and Coop (2020) suggested that permutation strategies 
like those we have used here and elsewhere (Machado et al. 
2021) might not be sufficient to capture the underlying demo-
graphic structure of the data, and that models that test for 
gene-environment association after accounting for sample covari-
ance are more appropriate (Forester et al. 2018; Bourgeois and 
Warren 2021; Luo et al. 2021). Yet, there is no guarantee that such 
models have a low false-positive rate (Lotterhos and Whitlock 
2014; Whitlock and Lotterhos 2015; Lotterhos 2023) nor has their 
performance been evaluated for time-series data. Nonetheless, we 
have implemented differentiation analysis using BayPass (Gautier 
2015), and have shown that SNPs inside In(2L)t as well as top 
Tmax0–15d GLM SNPs have elevated XtXST values and signals of as-
sociation with temperature maximum, compared to simulated data 
that conditions on the observed population covariance matrix 
(Supplementary Fig. 7). Therefore, we conclude that In(2L)t shows 
statistical evidence of strong allele frequency change associated 
with maximum temperatures in the weeks prior to sampling. 

As a form of natural selection, adaptive tracking can be difficult 
to differentiate from other processes that also result in allele fre-
quency oscillations (Grant and Grant 2002; Reimchen and Nosil 
2002; Bell 2010; Morrissey and Hadfield 2012; Nosil et al. 2018; De 
Villemereuil et al. 2020; Chevin et al. 2022). For example, we 
show that the specific aspects of weather identified by our ana-
lysis vary by geographical region (Tmax0–15d in Charlottesville, 
Hvar0–30d in EU-E, Have0–60d in EU-W, and Tave30–60d in 
NoA-E). Are these aspects of weather the proximate causes of 
temporally varying selection, or do they reflect something else? 
We consider 3 nonmutually exclusive hypotheses. First, AF oscil-
late across seasons as a direct consequence of fluctuating envir-
onmental selection. Although the specific environmental models 
that we identify suggest different stressors drive selection across 
the species range, these variables may simply be proxies for a 
shared seasonal stressor. Second, due to the temporal nature of 
our data it is plausible that AF are driven by negative frequency- 
dependent selection (Chevin et al. 2022), and because weather is 
seasonal, artefactual associations with environmental variables 
may have emerged. A third hypothesis is the joint action of genetic 
overdominance and boom-bust demography. In this model, the 
inverted and standard karyotypes are maintained via heterotic 
(Hedrick 2012) or associative overdominance (Ohta 1971) and are 
kicked out of equilibrium by yearly bottlenecks. As selection re-
turns alleles back to equilibrium frequency, allele trajectories 
may resemble seasonal oscillations. 

Although we cannot rule out any of these models conclusively, 
our data are most in line with the seasonal stressor hypotheses. To 
arrive at this conclusion, we first consider the overdominance- 
perturbation model. Under this model, we predict low spatial dif-
ferentiation and lower-than-average temporal differentiation be-
cause natural selection would rapidly push populations back to a 
common equilibrium. To the contrary, our data show high tem-
poral differentiation within Charlottesville (Fig. 3d and e), yet 
only average differentiation across spatial gradients (Fig. 6c). 
While evidence in favor of the seasonal stressor model over the 
negative frequency-dependent selection model is more limited, 
and differentiating these hypotheses is challenging (Chevin et al.  
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2022), several pieces of evidence point in favor of the seasonal 
stressor model. The first is a comparison between our results 
and several previous studies. In one, the seasonal frequency 
change of In(2L)t was documented during the 1980s in a Spanish 
population (Sanchez-Refusta et al. 1990). There, In(2L)t is high fre-
quency in the fall and low frequency in the summer, similar to 
what we observe (see Supplementary Fig. 15). In(2L)t was also 
found to be higher frequency in the fall compared to the summer 
in some midlatitude North American populations (Kapun et al. 
2016). The second are the signals of concordance that we observe 
across our environmental analyses in various geographical re-
gions. Loci responding to temperature in Charlottesville are en-
riched among the best models in EU-W and EU-E (Fig. 6a). We 
are puzzled by the lack of enrichment or directionality signals 
with the NoA-E samples, especially since the inversion break point 
of In(2L)t is enriched in the analysis by Machado et al. (2021). Yet, it 
is possible that due to its low sampling density, the NoA-E dataset 
may not have enough power when regressed against highly 
granular temperature changes within a given year. Future work 
using higher sampling densities across the east coast of North 
America will allow us to test this hypothesis. Taken together, pat-
terns of spatial and temporal allele frequency change show that 
In(2L)t is common across the range, weakly differentiated across 
spatial gradients, and highly differentiated through time, thus 
suggesting that In(2L)t and loci within it are affected by temporal-
ly heterogeneous selection. 

Are seasonal SNPs in In(2L)t old or new 
mutations? 
How adaptive inversions evolve remains an open question (Kapun 
and Flatt 2019). Of particular interest is whether adaptive inver-
sions emerge as a result of the divergence among old balanced 
polymorphisms, or whether they emerge as neutral structural 
variants and subsequently accumulate advantageous mutations 
(Schaal et al. 2022). Our results provide insights into this matter. 
While In(2L)t contains several old seasonal loci that predate the 
inversion, we also show that this inversion may still be accumulat-
ing beneficial alleles. In particular, we observe that the candidate 
window w9.6 colocalizes with a soft-sweep identified in North 
America that appears to be absent in an African population 
(Garud et al. 2015, 2021; Garud and Petrov 2016). Interestingly, the 
region corresponding to w6.1/w6.8 shows a similar reduction of 
genetic variation (Fig. 4b). Taken together, these signals suggest 
that these regions may also have experienced selective sweeps tar-
geting alleles on the inverted karyotype. Yet, given the history of re-
cent population expansion in D. melanogaster (Stephan and Li 2007), 
depressed values of Tajima’s D and genetic variation may be due to 
nonequilibrium demography (Nielsen 2001). Differentiating be-
tween these adaptive and demographic hypotheses will require 
functional validation of the putative drivers of the sweeps (e.g.  
Glaser-Schmitt et al. 2023). Functional evidence will be important 
for testing whether seasonal adaptation in In(2L)t is “fine-tuned” 
by young, habitat-specific alleles. Nevertheless, our work suggests 
that: (1) both old as well as new mutations may play important 
roles in the evolution of In(2L)t and that, (2) both balancing and dir-
ectional selection appear to be acting at different levels of genomic 
organization (between vs within inversion karyotypes). 

What are the candidate phenotypes 
and candidate loci for seasonality? 
Although individual candidate loci underlying seasonal evolution 
in D. melanogaster have been identified and validated (Schmidt 
et al. 2008; Paaby et al. 2014; Cogni et al. 2015; Behrman et al. 

2018; Glaser-Schmitt et al. 2021) genome-wide analysis of seasonal 
allele frequency change in this species has provided limited reso-
lution to identify targets underlying adaptive tracking (Bergland 
et al. 2014; Machado et al. 2021). The dense temporal sampling 
that we employ here may have helped resolve this limitation 
and has identified signals surrounding a handful of candidate 
loci associated with In(2L)t (Fig. 3a) and linked these regions to 
phenotype (Fig. 7). We show that standard karyotype homozy-
gotes are associated with higher values for sleep, starvation resist-
ance, and chemical resistance. The inverted homozygote, on the 
other hand, is associated with higher levels of activity, lifespan, 
and negative geotaxis. It is important to emphasize that our find-
ings do not imply that seasonal selection is acting on all of these 
traits independently since many traits are correlated with each 
other (Fig. 7d). Here, we focused our validation efforts on startle 
response because it shows high levels of heritability in the DGRP 
(∼40%; Jordan et al. 2012; Xue et al. 2017), and shows the strongest 
signals of enrichment between GWAS hits and GLM hits. We hy-
pothesize that startle response may be an important phenotype 
for overwintering survival and recolonization. For instance, a fas-
ter startle response could increase the chance of finding shelter 
during the winter and patch recolonization during the summer. 

Our work identifies the inversion breakpoints as well as a hand-
ful of regions inside the inversion as potential candidate loci for 
seasonality. One of these regions that particularly stands out is 
w5.2, the window with the largest FST differentiation among the 
karyotype classes other than the breakpoints (Figs. 4c and 5a). 
This window primarily encodes Msp300, a nesprin-like protein 
that mediates the positioning of nuclei, mitochondria, and synaptic 
junctions in muscle (Rosenberg-Hasson et al. 1996; Yu et al. 2006; Xie 
and Fischer 2008; Elhanany-Tamir et al. 2012). Msp300 harbors a 
trans-species polymorphism (32735G > T) in high LD to the inver-
sion (r2 = 0.68), and is also polymorphic in 2 closely related taxa 
(Fig. 5d). It remains unclear whether this trans-specific mutation 
is a case of ancient balancing selection (Gao et al. 2015), or recurrent 
mutation across the 3 species (Unckless et al. 2016). The functional 
role of 32735G > T is unknown in D. simulans and D. sechellia, how-
ever, the presence of this mutation in D. sechellia–a species that is 
endemic to a tropical island chain–suggests that it might be in-
volved in a more general response to environmental fluctuations. 

Conclusions 
In(2L)t plays a key role in seasonal adaptation 
Here we provide evidence showing that In(2L)t experiences strong 
seasonal selection in Drosophila despite strong overwintering drift. 
In North America, the inversion appears to evolve by adaptively 
tracking in response to weather weeks prior to collection. We ob-
serve the action of both balancing and directional selection at dif-
ferent levels of genomic organization between vs within inversion 
karyotypes. By showing that seasonal loci in In(2L)t are both 
young and old, our findings showcase that adaptive inversions 
that evolve by capturing old beneficial alleles often continue to ac-
cumulate adaptive mutation on existing inversion karyotypes 
(Kirkpatrick and Barton 2006). This exemplifies instances of the 
action of ancient balancing selection across large spatial scales, 
and fine-tuning local adaptation within spatially structured popu-
lations (also see Kapun et al. 2023). Furthermore, our work infers 
and experimentally validates the phenotypic effects of alternate 
alleles at a candidate locus linked to In(2L)t. Overall, this work is 
an example of evolution in action and provides new insights 
into the biology of adaptive cosmopolitan inversions.  
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This paper used multiple datasets that are available in the National 
Center for Biotechnology Information (NCBI; https://www.ncbi.nlm. 
nih.gov), as described in their corresponding citations. Data gener-
ated as part of this paper is also available in NCBI in bioprojects: 
PRJNA882135, PRJNA728438, and PRJNA727484. Sequence Read 
Archive (SRA) IDs for individual samples can be found in  
Supplementary Table 1. A GitHub repository with code can be found 
at https://github.com/Jcbnunez/Cville-Seasonality-2016-2019. Data 
S1, S2, and S3 can be found in Zenodo (https://zenodo.org/) at  
https://zenodo.org/doi/10.5281/zenodo.7305042. 
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